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I ABSTRACT

This thesis presents the use of a general purpose non-

linear optimization program in the preliminary stage of ship

design for the selection of a propeller based on methodical

series propeller test data. The propeller series utilized is

the well-known Wageningen B-Series. Three (3) "Design Cases,

representing the thrust, power and matching approaches to

powering problems, are formulated as FORTRAN subprogram

analysis codes for solution by the synthesis/optimization

program COPES/CONMIN. Designer constraints considered are:

1) diameter limitation,

2) cavitation limit on expanded area ratio using
Keller's criterion

3) strength requirement determined by an empirical
relation and by a method developed by Schoenherr
with modifications by the author.

Objective functions considered are maximized open water

efficiency and minimized propeller blade weight. Optimized

solutions to specific problems previously presented by other

authors are obtained and results are compared.
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I. INTRODUCTION

A. BACKGROUND

The ship design process, in its most rudimentary form,

has been formulated and tracked by the utilization of the

classical design spiral (see Figure 1.1). The design follows

a convergent helical path past each major milestone "spoke"

until, after numerous iterative cycles, the final configura-

tion is "centered" upon. Whether one attempts to segregate

the principal phases of Preliminary, Advanced and Contract

Design into separate spirals or combine these phases in

series along the entire path to the center, it is not long

before the designer's roughed-out sketches give way to serious

"number crunching", specifically that of propulsion power

estimation.

To estimate the power required to drive the ship through

the water at its design speed, a decision must first be made

as to what type of propulsor (i.e., propeller, water jet,

paddle wheel, etc.) will be used. For the average case, and

for the discussion that follows, the marine propeller is

chosen to be the propulsion device. Since

a ship propeller may be regarded as a transducer
that converts the rotational power transmitted
through the shaft into the translational power to
propel the ship, [Ref. 18: p. 10]

the selection and design of this device is obviously an

important factor in the eventual size (weight and power) of

the ship's propulsion plant. While hydrodynaxnicists provide

4 14
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a myriad of theories and techniques to generate a "custom

built" (i.e., wake adapted) propeller for the ship under

consideration, their expertise is usually not required in

the early stages of preliminary design simply because the

design has not been refined enough beyond gross estimates.

At this stage, the designer strives to formulate what is

possible based on previous experience. For preliminary

power estimation, previous propeller designs (i.e., "stock"

propellers) and results from methodical series of model

propellers are analyzed by the designer in order to select

the "best" available propeller under various conditions posed

by the problem under consideration. Three examples of typi-

cal problems encountered in preliminary ship design are:

1) Given the ship's effective horsepower at a specific

speed and estimates of hull performance parameters, which

propeller, as determined by certain principal characteristics,

will require the least amount of delivered power from the

propulsion plant?

2) Given the delivered power from a specific propulsion

system in terms of torque and revolution rate at the pro-

peller/shaft interface and estimates of hull performance

parameters, which propeller will generate the largest effec-

tive horsepower and speed parameters?

3) Given a ship's effective horsepower and speed, various

hull performance parameters, and the propulsion plant's

delivered power characteristics, which propeller will "match"

4 16



these requirements at a minimum amount of weight for a speci-

fied material?

(Author's Note: For the sake of brevity, the three

selection problems just cited will, henceforth, be referred

to as "Design Case No. 1", "Design Case No. 2" and "Design

Case No. 3", respectively.)

For this study, the methodical propeller series method

is viewed as the designer's choice for preliminary powering

analysis. One of the most-widely used methodical series data

on model propellers is the Wageningen B-Screw Series.

Initially, the results of the series were presented as tabu-

lations of non-dimensional thrust and torque coefficients

(KT and KQ respectively) versus the non-dimensional advance

ratio (J) for analytical work and as the familiar "Bp-65" and

"Bu-6" diagrams for design purposes. As "trial & error"

design methods performed by hand in all engineering disci-

plines gradually transcended to numerical manipulation by

the modern digital computer, the necessity for the adaption

of the Series results to a format suitable for use in computer-

aided design methods became obvious. This was accomplished

through multiple regression analysis of the original open-

water test data of the 120 propeller models in the Series

and presented in the form of polynomial expressions for "KT"

and "KQ" (Refs. 1,2].

The adaptation of the Wageningen B-Screw Series polynomials

to various types of propeller selection problems formulated

174 .



for computer solution has been implemented recently by two

authors. Triantafyllou [Ref. 3] and, of late, Markussen

[Ref. 4] presented different propeller selection problems and

proposed different schemes for computer-aided "optimized"

solutions. In short, specific expressions for the con-

straints imposed and the objective (optimality condition)

to be maximized, expressed in terms of a number of design

variables and parameters, were developed. Then, each system

of equations was solved by a Newton-Raphson method to give

a solution set of the design variables which maximized the

objective and met all constraints.

Rather than formulating and coding a different optimiza-

tion scheme each time a propeller selection problem presents

a different combination and number of design parameters,

variables and constraints, a better approach would involve

formulating the problem (constraints and objective function)

once in terms of all design parameters and variables and

utilizing a general purpose optimization scheme which can

handle any combination and number of constraints and design

variables. This alternative certainly allows the designer

more flexibility in solving his problem. Moreover, it elimin-

ates repetitive coding and debugging associated with the

implementation of a computer-sided solution for each particu-

l~ar design problem.

4 18
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B. PROBLEM STATEMENT

The problem, then, is that the previously cited computer-

aided "optimized" solutions to the propeller selection problem

are not broad enough in capability to handle variations in

the problem formulation. The objective of this thesis is to

apply an available general purpose optimization computer

code to the solution of various propeller selection problems

encountered in Preliminary Ship Design in order to enhance

the flexibility of the selection procedure.

C. SCOPE

To achieve the stated objective, the general purpose

non-linear optimization code CONMIN [Refs. 5,6] together with

the engineering synthesis code COPES [Ref. 7) (hereafter

referred to collectively as COPES/CONMIN) is utilized in the

solution of the three previously cited preliminary design

propeller selection problems. Using the Wageningen B-Screw

Series propeller characteristics expressed in polynomial

expressions of various design variables, three "analysis"

codes, required by COPES/CONMIN, are developed in such a way

that various combinations of design variables and constraints

are used, thereby demonstrating the applicability of the

COPES/CONMIN optimization program in the solution of propeller

selection problems.

D. THESIS ORGANIZATION

The remainder of the thesis is organized in the following

manner.

19
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Chapter II presents a short description of the optimiza-

tion problem in general terms and a follow-on discussion of

the COPES/CONMIN optimization program and the mathematical

techniques employed therein.

Chapter III introduces definitions and concepts applica-

ble to the propeller selection problem. A subsequent dis-

cussion on the Wageningen B-Screw Series is followed by final

comments on constraints imposed on the propeller selection

problem.

Chapter IV presents the formulation of the propeller

selection problem as a design optimization problem which

can be solved using COPES/CONMIN.

Chapter V discusses the background, formulation and

programming utilized in estimating a propeller blade's weight

for subsequent consideration as an objective function.

Chapter VI reviews the author's modifications to the

propeller strength analysis developed by Schoenherr [Ref. 8]

in the early 1960's for the American Bureau of Shipping. A

subsequent discussion on the programming details of FORTRAN

codes, which are utilized for the determination of adequate

propeller blade strength, completes the chapter.

Chapter VII reviews the formulation and programming for

the analysis code which is used in solving propeller selection

problems represented by Design Case No. 1. Sample solutions

are presented and compared to those presented previously by

other authors.

20



Chapters VIII and IX consider Design Case No. 2 and

Design Case No. 3 selection problems, respectively, in a

similar fashion to Chapter VII.

Chapter X, the final chapter, presents the author's

conclusions and recommendations.

As a final note, all computer coding presented in this

thesis is done in FORTRAN IV, the language used by COPES/

CONMIN. For the reader's convenience, Appendix A provides

a cross-reference of the symbols presented throughout the

thesis to appropriate FORTRAN variable names appearing in

the author's codes.

21
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II. OPTIMIZATION

A. INTRODUCTION

The purpose of this chapter is to introduce definitions

and concepts used in the formulation and solution of the

general optimization problem. Then, a short discussion on

the theory and implementation details of COPES/CONMIN is

presented.

For further study on the theory and methods of optimiza-

tion, the reader is directed to the texts by Fox [Ref. 9],

Fiacco and McCormick [Ref. 10], and Himmelblau [Ref. 11].

B. DEFINITIONS

Before discussing the techniques of optimization and

their application to engineering problems, some preliminary

definitions of basic terminology should be stated. Terms

which have relevant significance are:

1) Parameters--The numerical quantities for which values

are assigned to produce a design are called parameters. From

this, it follows that a design may be specified by a vector

D containing "p" components, each of which is associated with

a parameter. That is:

(2.1)

Dp
p

22
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However, in a design process, the parameters are determined

by some logical procedure through analysis of some kind.

Some might take on fixed values to become "preassigned"

parameters. Interrelationships among other parameters might

exist so that only some of the parameters are changed when

one design is compared to another. This consequence leads

to the definition of "design variable".

2) Design Variables--The parameters for which values are

chosen in some fashion to produce a de;,Jcn are called design

variables. They represent an ordered collection of components

which is a subset of the design vector ff. This subset is

unique in that its components are "variable", i.e., they may

take on different values in the design process. Having

"preassigned" or fixed some of the design's parameters and

only allowing the remaining "desigrn variables" to change, leads

to the conclusion that a design is now uniquely specified by

a vector X containing "n"~ components (n < p) , each of which

is associated with a design variable. That is:

= (2.2)

Ixn

3) Objective Function--The computable function of all or

some of the design's preassigned parameters and/or design

variables, with respect to which the design is to be opti-

mized, is called the objective function. Single valued in

23



quantitative terms, the objective function's minimum or maxi-

mum value represents the "best" obtainable or "optimized"

design. It is expressed as F(U) to show its dependence on

the design's parameters. But, since a design can be uniquely

defined by R alone, then clearly F(X) suffices as an expression

for the objective function.

4) Constraints--Restrictions on the design which must be

satisfied in order to produce an acceptable design are

called constraints. A constraint may be classified as a

"side" or a "behavior" constraint. A side constraint re-

stricts or bounds the range of the design for reasons other

than direct consideration of performance. The side constraint

on the "i"th design variable may be expressed as:

Xlower < X < X upper i = 1,...,n (2.3)
1 - 1 - 1

A constraint derived from those performance or behavior

requirements that are explicitly considered is called a be-

havior constraint. Most often, it appears as a computable

functional relation involving the design's parameters, both

preassigned and variable alike. The relation may be an in-

equality so that the "j"th of "m" inequality constraints

can be expressed as:

G.(D) < 0 j = l,...,m (2.4)
2

24
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Alternatively, the relation may be an equality on the "k"th

of "9" equality constraints expressed as:

Hk(D) = 0 k = 1,..., (2.5)

Of noteworthy importance here is that, as before, if

some of the design's parameters are preassigned, then the

resulting design is that defined by X which contains only

the parameters that can be varied in the design process,

i.e., the design variables. Therefore, constraints imposed

upon the design may be expressed under one equation as:

G. (X) < 0 j = 1...,m
J

Hk(X) = 0 k = i... (2.6)

Xlo w e r  < X. < Xupper i21 - 3 - .

A final form for constraints is that of the discrete-valued

design variable.

5) Feasible Design--A design in which specified constraints

are satisfied is called a feasible or "acceptable" design.

6) Infeasible Design--A design in which constraints are

violated is called an infeasible or "unacceptable" design.

C. PROBLEM STATEMENT

If one presupposes that a range of designs exists within

a selected design concept, then it follows that different

25
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methodologies also exist by which one may choose the param-

eters which describe the design. One such method is optimi-

zation where parameters are chosen in a way that the design

will satisfy all of the limitations and restrictions imposed

upon it and will be "best" in some sense. In view of the

foregoing definitions, optimization is then a selection method

applied to a design problem by which an objective function

F(D) is minimized to produce an acceptable design which satis-

fies a certain set of requirements called constraints.

Formulated mathematically, the general, non-linear,

constrained optimization problem may be stated under one

equation as:

Minimize: F(5) =OBJ

Subject to: GA(D) < 0 j = L,...,m (2.7)
3

Hk05) < 0 k =

X lower <~ .< upper =
2. - 1 - 1.

Again, as pointed out in the previous section, the design

may be uniquely defined by just its design variables as

specified by X when some parameters are preassigned. Thus,

the general, non-linear, constrained optimization problem

can now be stated under one equation as:

26



Minimize: F(X) = OBJ

Subject to: G(X) < 0 j =,...,m (2.8)

Hk(x) = 0 k =

Xlower < X. < xUp p e r  i =
1 - i - 1

Solutions methods for this optimization problem are

abundant. Those pertaining to the linear and quadratic

optimization problems involving a few design variables are

most often presented in graphical or analytic form, although

numerical schemes are, by no means, a dormant form. Struc-

tural and thermal problem solutions are most prevalent. How-

ever, as the optimization problem becomes more complex in

terms of non-linear relationships among an increasing number

of design variables and of an increased number of design

constraints, numerical or mathematical programming techniques

dominate the solution methods.

To limit the scope of this discussion, only the numerical

techniques relevant to COPES/CONMIN will be considered. For

more background on optimization techniques and applications,

the reader is directed to a recent paper by Vanderplaats

(Ref. 121 which presents a concise, but thorough, qualitative

review of optimization. Although this paper deals exclusively

with the application of design optimization to structural

problems, it also contains a very extensive and current list

of references on general techniques and applications of

optimization.
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D. COPES/CONMIN

As previously stated in Chapter I, COPES/CONMIN is the

collective acronym for the FORTRAN program utilizing the opti-

mization code CONMIN and the synthesis code COPES. COPES

stands for COntrol Program for Engineering Synthesis; CONMIN

is an acronym for CONstrained function MINimization.

1. CONMIN

CONMIN is a FORTRAN program, in subroutine form, which

solves the general non-linear constrained optimization prob-

lem as stated:

Minimize: F(X) = OBJ

Subject to: G.(X) < 0 j l,...,m (2.9)

Xl ow e r  < upper j1 - I -

Equation (2.9) applies to the entire statement. Observe

that equation (2.9) differs from equation (2.8) in that the

equality constraint set, given by VX) = 0, is not specified.

This is because the version of COPES/CONMIN used in this

study does not consider these types of constraints. However,

this will not pose any difficulty in solving the propeller

selection problems previously cited.

Again, F(X) is the objective function (OBJ). The

vector X contains the "n" design variables (NDV). G. (X)

are the "m" inequality behavior constraints (NCON) imposed

on the optimization problem; Xlower and Xupper are the
1 i
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respective lower and upper side constraints which bound the

"design space" over which F(Y) and G.i(R) are defined. As

functional relationships involving R, F(R) and G.(M may be

implicit or explicit, but, in any event, must be continuous

and have finite numerical values.

When the inequality condition of equation (2.9) is

not satisfied, i.e., G.(W > 0 for any constraint, the con-

straint is said to be violated. If the equality condition

is met, i.e., G.i(X) = 0 for any constraint, the constraint

is said to be active. And, finally, if the inequality condi-

tion is satisfied, i.e., G .(R) < 0, for any constraint, that

constraint is termed inactive. Any design, defined by R,

which satisfies the inequalities of equation (2.9) is desig-

nated as a feasible design. Likewise, any one which vio-

lates these inequalities is termed an infeasible design.

The feasible design with the minimum objective function value,

often referred to as the "minimum feasible design", will,

therefore, be the optimum design.

During the optimization process, CONMIN employs the

Fletcher-Reeves algorithm [Ref. 13] for locally unconstrained

problems, and Zoutendijk's methoqd of deasible directions [Ref s.

14,153 for locally constrained problems, in a numerical pro-

cedure which attempts to minimize the objective function,

F(R) = OBJ, until one or more of the constraints, G.i(R),

becomes active. The numerical search procedure begins with

an initial Y vector which may or may not specify a feasible
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design. Modifications are included in CONMIN so that, if

the initial design is infeasible, a feasible solution will

be obtained with minimal increase in F(X). By iteratively

updating the design vector X by the following relation:

R(q+l) = (q) + * (q) (2.10)

the optimization process continues by following the con-

straint boundaries in a direction of search S so that the

value of F(X) decreases with each iteration q. The scalar

a* defines the distance of travel in the direction of search

S. The process terminates when a vector 5 is found such

that no further decrease in F(R) can be made. The vector

is considered to be optimal and, at least, a local minimum.

CONMIN can be used alone as a subroutine in any

FORTRAN program where numerical optimization is desired.

However, in order to make the optimization process more "user-

friendly", CONMIN has been coupled to COPES in order to

simplify its application to various types of problems.

Further information on CONMIN can be found in previously

cited references (5] and (6].

2. COPES

COPES is a FORTRAN program that provides automated

design and trade-off capability to the design engineer. It

utilizes the optimizer CONMIN to provide the following six

specific capabilities:
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1) simple analysis

2) optimization

3) sensitivity analysis

4) two variable function space analysis

5) optimum sensitivity

6) optimization using approximation techniques

During the execution of COPES, say for optimization, three

principal tasks are performed:

1) data management on the design variables and constraints

through location assignments in a FORTRAN common block called

GLOBCM.

2) decision process control on the attainment of an optimal

design vector Y through multiple calls to the optimizer

until a minimum or maximum value of OBJ is achieved and all

G.(X) are satisfied.

3) evaluation of OBJ and G.(W) at each Xq and X-q + l when

ICALC = 2 through multiple calls to the user-provided analysis

subprogram, SUBROUTINE ANALIZ.

For the application under consideration in this study, only

the optimization capability will be used. Therefore, further

elaboration on the other capabilities is not warranted.

Reference [7] is the user's manual for COPES/CONMIN.

Details on the mechanics of user implementation are presented

with subsequent illustration by example. The reader is,

therefore, encouraged to familiarize himself with the refer-

ence. However, at this point, it is sufficient to be aware

of the fact that a user of COPES/CONMIN is required to:
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1) provide a FORTRAN subroutine called ANALIZ which per-

forms the input of preassigned parameters, the evaluation of

the objective function and constraints during the analysis

phase of the optimization search and the output of the

results.

2) provide an assembled deck of control cards required

by COPES.

E. CONCLUDING NOTE

The field of optimization is both extensive and complex

and, therefore, the foregoing presentation is, by no means,

complete in every detail. However, it is felt that the pre-

ceding overview, in conjunction with the cited references,

covers the necessary prerequiisites that will enable the reader

to follow the application of COPES/CONMIN to the various

propeller selection problems in the chapters that follow.

32



III. POWERING, PERFORMANCE AND PROPELLERS

A. INTRODUCTION

The purpose of this chapter is to present an overview

of the terminology and concepts that pertain to ship propul-

sion, propeller selection and the use of model propeller

test data. Initially, fundamental definitions used in ship

powering problems are presented. This is followed by a

discussion of the "classic" types of propeller design/

selection problems encountered by the naval architect and

marine and naval engineers. Propeller model testing and

propeller performance characteristics are reviewed next.

The chapter is completed with a discussion of the Wageningen

B-Screw Series.

The goal here is brevity. The reader is, therefore,

encouraged to investigate the references cited for further

details.

B. DEFINITIONS

Some fundamental terms associated with most propeller

design/selection problems are:

1) Effective Horsepower (PE )--power required to tow the

"bare" hull (without propeller; rudder and appendage allowance

assumed included) that generates a given resistance (R T) at

a given speed MV. It is determined by:

RT V (3.1)
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2) Thrust Horsepower (P T)--power delivered to water by

a propeller developing a thrust force (T) and moving at a

speed of advance (VA) without the influence of a hull form

ahead of it. P T is determined by:

P 4TVA (3.2)

3) Delivered Horsepower (PD )--power delivered by shaft

to propeller, normally specified at the outboard side of the

stern tube. QSis the torque delivered to the propeller;

nis the revolution rate of the shaft and, consequently,

the propeller. PD is determined by:

P 2rr Q P (3.3)
D 550

4) Shaft Horsepower (P S)--power delivered to the inboard

side of the stern tube having a transmission efficiency of

ns is determined by

P (3.4)S ns

5) Brake Horsepower (PB )--power delivered by the prime

mover at connection flange to the power train. While P B is

normally associated with the prime mover's rated power at

this connection (BHP), it can also be specified from the

power train/propeller side as:
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- s (3.5)
PB - IB nG

where B and n G are, respectively, the bearing system and

reduction gear transmission efficienci-s.

6) Thrust deduction factor (l-td)--ratio of the tow

resistance (RT ) to the thrust (T) provided by the propeller.

It is determined by

T

7) Wake Factor (Taylor's) (l-wt)--ratio of the speed of

advance (VA) to the ship's speed (V). It is given by:

(l-wt) - A (3.7)V

8) Advance Ratio (J)--a non-dimensional value, associated

with propeller test data presentation (see figure (3.1),

given by the following relation:

j V(1-wt) VA (3.8)
n D np D

9) Thrust Coefficient (KT)--a non-dimensional value asso-

ciated with the thrust force (T) developed by a propeller

of diameter D which is turning at a rate np and operating

in a fluid of density p. It is defined by the following

expression:
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T
KT 2 4 (3.9)T p np2D

10) Torque Coefficient (K Q)--a non-dimensional value

associated with the torque (Qp) absorbed by a propeller of

diameter D which is turning at a rate np and operating in

a fluid of density p. It is defined by the following

expression:

KQ D(3.10)Q p np2D
P

11) Open Water Efficiency (n )--the ratio of PT to PD

for a propeller in open water conditions, with a uniform

inflow velocity field at a speed of advance VA. It is ex-

pressed as:

P T T VA JT (3.11)
no - P 2Tr n 2 1TK

D PSQ

12) Hull Efficiency (nH)--a ratio of work done on the

ship to that done by the propeller expressed as:

PE RT V (1-td)

H P T T VA  - (3.12)

13) Relative Rotative Efficiency (nR)--the ratio of the

actual, behind-hull efficiency to the open water efficiency.

The value of nR does not, in general, depart from the value
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of 1.0. Most often, n R varies between 0.95 and 1.0 for twin-

screw ships and between 1.0 and 1.1 for single screw ships.

Applicable units for the terms in the expressions above

are:

1) horsepower (hp)--PE, PT' PS' PD and PB

2) pounds (lbf)--RT, T

3) feet/second (ft/sec)--V, VA

4) foot-pounds (ft-lbf)--Qs, Qp

5) feet (ft)--D

6) revolutions/second (rps) -- np

7) revolutions/minute (rpm)--Np = np/60.0

The quantities T, VA, D, Qp and nP are obtained from the

propeller test data results. The quantities RT and V are

specified from the design point on the R-V curve for the hull

under study. The quantity p is a property of the fluid in

which the hull and propeller operate. And, finally, nB' G

and nS are characteristics of the bearing, gear and stern

tube systems. In preliminary design studies, nominal values,

based on previous designs, are usually assumed unless, of

course, these systems have been selected and actual values

can be specified.

C. POWERING CONCEPTS

1. Basic Relations

Simply stated, the fundamental powering relationship

to be solved in ship propulsion and powering problems is:

37

1 1



(1-td)
PE = (l-wt) .R no PD (3.13)

Utilizing the definitions just presented, equation (3.13)

can be rewritten as:

RT V (1-td) 27 QS np

550 TY-w"t .R no 550 (3.14)

Rearranging terms of equation (3.14) gives:

RT (l-wt)V 2ir Q (3.15)

TIEtd 550 R o 550

And, finally, when substitutions are made, equation (3.15)

becomes:

T VA T(l-wt)V 27T QTS n (
550 550 - R no 550 (3.16)

Equations (3.14), (3.15), and (3.16) provide the basis for

different approaches to the solution of a typical powering

problem. More background and information on the definitions

and equations presented above may be ;ound in Chapter VI,

Sections 10-16 in the text by Comstock [Ref. 16] and O'Brien's

book [Ref. 17].

2. Approaches to the Powering Problem

From equation (3.16), three types of propeller selec-

tion problems are discernible. In the first instance, the

propeller thrust T and the propeller's speed of advance VA
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are taken as known quantities. The fact that T is known

substantiates the "Thrust Approach" nomenclature given to

this type of selection problem. In the preliminary (or, in

some circles, conceptual) ship design phase, the specifica-

tion of T is based upon the requirement imposed by the

resistance of the ship (R T) at its design speed (V) (or, the

effective horsepower (PE at V) and estimates of wt and td

in the absence of wake surveys and self-propulsion data from

model tests. Essentially, the thrust delivered by a selected

propeller must provide, at least, the thrust required for the

ship hull under study. The objective in the "Thrust Approach"

selection problem is to determine, by logical means, the

appropriate values of QSand n P when the open water efficiency

h(r) is set by the selected propeller and its performance

characteristics.

In the second instance, the delivered torque (QS and

the propeller shaft speed (n P) are taken to be known. The

"Power Approach" nomenclature is given to propeller selection

problems of this type because PDis known. Here, with the

shaft and propeller speeds being equal, the-torque absorbed

by the propeller (Q P) must be, at least, equivalent to the

delivered torque (QS) The corresponding objective in the

"Power Approach" selection problem is to determine, by logical

means, the expected ship speed (V) (or, the speed of advance

(VA )) and the associated thrust MT that can be developed

when the open water efficiency (n 0) is, again, set by the

selected propeller and its performance characteristics.
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The final, and most familiar, types of propeller

selection problem occurs when T, VA or V, Q and n P are all

known. From equation (3.16), the open water efficiency (n 0

is now established as a requirement to be met. The objective

is, simply, to select a propeller whose open water efficiency

ho ), developed thrust and absorbed torque are equivalent to

or "match" the requirements imposed. obviously, this approach

on the selection problem has been designated as a "matching

problem".

The reader is directed to the paper by Vassilopoulos

[Ref. _-8) for further information.

D. PROPELLER PERFORMANCE CHARACTERISTICS

Up until the late 1950's, much of the knowledge about

the performance of propellers has been gained from experience

with models. To study the relationships governing their

behavior, a model propeller is built and run in a towing

tank without any hull ahead of it. This is done by running

the propeller on a long shaft projecting well ahead of a

narrow, hydrodynamically shaped pod or "propeller boat" which

contains the driving mechanism and recording apparatus and

is attached to the towing carriage. The propeller advances

into undisturbed fluid (usually water of density p and kine-

matic viscosity j) so that the speed of advance (VA) is known

and the flow into the "disc" swept by the turning blades is

uniform. For the model propeller of diameter (D) under test,

readings of thrust (T), torque (Q S) and shaft revolutions (n P)
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are recorded over a range of values for speed of advance (V A)

in this "open water," condition.

Using the laws of similitude, the collected data is

reduced and scaled appropriately into the familiar functional

relationships between the advance ratio (J) and the non-

dimensional coefficients of propeller performance. These

coeffi~cients or performance characteristics, defined pre-

viously, are:

1) Thrust Coefficient (K T)

2) Torque Coefficient (KQ )

3) Open Water Efficiency (n 0

Figure (3.1) graphically depicts the relationship between J

and K T and K Qderived from test data for a propeller defined

by a specific expanded area ratio (A.E/A 0), pitch-diameter

ratio (P/D), number of blades (Z) and thickness-to-chord

ratio (t/c).

Definitions of these terms with graphical illustrations

pertaining to various aspects of propeller geometry can be

found in Section 15 of references [16], [17] and in van Manen's

publication [Ref, 191.

More recently, highly analytical theories (lifting line,

modified lifting line, lifting surface, etc.) for use with

high-speed digital computers have been formulated and subse-

quently used in "modeling", in a mathematical sense, the

propeller and its behavior in the "wake adapted" (or, behind

hull) condition as well as the "open water" condition.
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Figure 3.1 Open Water Test Results--B 4-100 Series
Propeller
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Additional benefits derived from this approach to propeller

performance analysis include:

1) determination of blade section profiles along the

propeller's blade radius (R) to achieve uniform lift and

internal stress distributions;

2) computation of "off-design" performance characteris-

tics in all quadrants;

3) subsequent determination of hull surface forces, bearing

loads and spindle torques induced by the propeller;

4) prediction of steady and unsteady stress distributions

in the propeller blade using the finite element method on

the blade of the propeller under study.

Obviously, this approach to propeller performance analysis

serves to:

1) eliminate the time-consuming and expensive model

construction and testing of propellers in tow tanks and

cavitation tunnels;

2) eliminate the "scaling" discrepancies which inhibit

the reliability of design charts and model propeller data;

3) eliminate those design charts altogether.

As in the case with model experiments, however, the ultimate

objective remains the same, i.e., establishing the performance

characteristics of the propeller in terms of KTV K Q and as

functions of J. Having these relationships enables the ship

designer to proceed in solving the power equation (equation

(3.13)) through any of the approaches previously discussed.
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E. THE WAGENINGEN B-SCREW SERIES

1. Background

The model test data of the Wageningen B-Screw Series

have been selected for use in the powering problems to be

solved utilizing COPES/CONMIN. The choice was driven by the

following considerations:

1) the Series is widely known and, despite its growing

obsolescence, is still used in preliminary ship design

studies.

2) the availability of previous investigations [Refs. 3,4]

which utilized the series, for comparative analysis of optimi-

zation results.

3) the applicability of the polynomial expressions for KT

and KQ to computer-aided analysis.

The Series tests were conducted from 1940 through 1960 and,

therefore, represent propeller designs (principally naval

and merchant applications) and design philosophy of that era.

Specifically, the Series consists of 120 model

propellers. As is customary in methodical or systematic

model propeller series testing, the number of blades (Z),

expanded area ratio (AE/AO) and pitch-diameter ratio (P/D) are

varied systematically, while the blade outline, the profile

of the blade's cross section along the blade radius, blade

cross section maximum thickness (t), blade section chord

length (c), diameter (D) and propeller hub-to-diameter ratio

(d/D) were kept constant for given values of AE/AO and Z.
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Table (I) summarizes the variations in Z and AE/AO for each

set of model propellers having pitch-diameter ratios (P/D)

of 0.4, 0.6, 0.8, 1.0, 1.2 and 1.4.

TABLE I

Summary of the Wageningen B-Screw Series

Blade OtmOe rade area rati AE,

0.35 0.50 0.65 0.80

0.40 0.55 0.70 0.85 1.00

5 0.45 0.60 0.75 1.05

6 0.50 0.65 0.80

7 0.55 0.70 0.85,

2. Series Results

The test results of the Wageningen B-Screw Series were

originally presented in the form of Bp-6, Bu-6 and KT, KQI

and -J diagrams. As stated in Chapter I, multiple regression

analysis was performaed (again, [Refs. 1,2]) on the results

to produce the polynomial expressions for KT and K . The

open water efficiency (n0 ), as a function of J, follows from

equation (3.11). The correction for "scale effects" was

achieved by using Lerb's method of equivalent profiles

[Ref. 20). Although Triantafyllou's thesis [Ref. 213 sug-

gests an improved method for scale correction, the results

of Reference [2] will be used in this study.
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In propeller selection problems which use this

Series, values for KT and KQ are defined as:

KT = fl (JP/DAE/AO'Z,t*/c.75R)

(3.17)

KQ = f2 (J,P/D,AE/AOZ,t*/c.75R)

To compute KT and KQ, the following equations are used:

K = K; + AKT

(3.18)

K = K6 + AKQ

The polynomial expressions found in Tables (5) and (6) of

Reference [2] are then used to evaluate to components K '

K6, AKT and AKQ.

Table (5) in Reference [2] lists the coefficients used

in the polynomial expressions for K' and K6 at an equivalent
6Q

Reynolds numbpr (Rn 75R) of 2 x 106. It is defined as:

c.75R V(VA) 2 + (0.757Tn D2

Rn 75R A p (3.19)

where:

V = kinematic viscosity of the fluid (ft2 /sec);

c ' blade section chord length at 3/4 propeller
radius (.75R) in feet (ft).
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To account for "other effects", coefficients AKT and KQ are

introduced. Table (6) in Reference [2] lists the coeffi-

cients used in the polynomial expressions for these coeffi-

cients. "Other effects" include the operation of the

propeller at an equivalent Reynolds Number different from

2 x 106. Also, variations in other parameters which define

the propeller's geometry, specifically t/c values different

from the ones fixed by the Wageningen propellers, are taken

into account by corrections to the equivalent Reynolds number.

By keeping the blade section's chord length (c) at the value

of the Wageningen propeller, a change in a blade section's

maximum thickness from the standard one defined by the Series

(t ) to one preferred in the selection (t* ) produces a

new equivalent Reynolds number (Rn75) given by:

75R =exp 4.6052 + 1+2.(t/ 75R) (£n 75R-4.6052)

(3.20)

where:

n.75R = the new eqaivalent Reynolds number;

(t*/c) 7 5R new equivalent t/c at 3/4 propellerradius;

Rn.75R the Reynolds number computed by equation(3.19);

(t/c). 75R standard equivalent t/c at 3/4 propeller
radius for Wageningen propellers.
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For the Wageningen B-Screw Series, the standard equivalent

t/c is given by:

t/C 75R (0.0185 - 0.00125Z)Z (3.21). 75R - 2.073 )E/Ao

Further details on blade section geometry will be addressed

in Chapter V. Reference [2] contains background and other

information on the equations above.

3. Limitations on Series Data

In utilizing the Wageningen B-Screw Series in any

propeller selection problem, the following restrictions

apply to the Series data:

1) Number of Propeller Blades (Z)--The Series considers

only propellers with numbers of blades as shown in Table

(I). Therefore,

Z = 2, 3, 4, 5, 6 or 7 (3.22)

However, the two bladed propeller, i.e., Z = 2, is not very

common in conventional merchant and naval ship designs and,

therefore, is not included in this study.

2) Equivalent Reynolds Number--The Series data, as pub-

lished, is valid only in the range of equivalent Reynolds

numbers given by:

2 x 106 < Rn < 2 x 109 (3.23)
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If the equivalent t/c is varied from the standard equivalent

value (t/c).75R' then the new equivalent Reynolds number

(Rn* which results from this variation, must lie within

the same limits. That is,

2x 106 < Rn* < 2 x 109 (3.24).75R -

These limits are appropriate for full-size propellers. For

example, given the following:

a) wt = .22

b) V = 20 (knots)

c) Np = 104 (rpms)

d) D = 25 (ft)

e) c.75R 4.0 (ft)

f) v = 1.2285 x 10 (ft 2/sec)

the value for Rn.75R is equal to 3.619 x 1O7.

3) Pitch-diameter Ratio (P/D)--The series data considers

only pitch diameter ratios in the range given by:

0.4 < P/D < 1.4 (3.25)

4) Advance Ratio (J)--An inspection of the Series results

in graphical format shows that J varies over a range given

by:

0 < J < 1.6 (3.26)
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5) Expanded Area Ratio (AE/Ao)--Using Table (I), AE/A0

varies over certain ranges depending on Z. This is stated

as:

0.35 < AE/AO < 0.8 Z = 3 (3.27)

0.40 < AE/AO < 1.0 Z = 4 (3.28)

0.45 < AE/AO < 1.05 Z = 5 (3.29)

0.50 < AE/AO < 0.8 Z = 6 (3.30)

0.55 < AE/AO < 0.85 Z = 7 (3.31)

6) Hub didmeter-to-Propeller Diameter Ratio (d/D)--From

Table 37, Section 17 of Reference [16), the Series data

requires that:

d/D = 0.18 Z = 3,7 (3.32)

d/D = 0.167 Z = 4,5,6 (3.33)

F. SUMMARY

From the preceding discussions, the following observa-

tions can be made:

1) the "Design Cases", defined in Chapter I, are examples

of the powering equation solution approaches. That is, Design
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Case No. 1 constitutes a "Thrust Approach" problem; Design

Case No. 2, a "Power Approach" one; Design Case No. 3, a

"Matching" problem.

2) equations (3.17) and (3.8) imply that an optimization

solution to the "Design Cases" will involve PE' V, wt, D,

P/D, AE/Ao, (tec). 7 5R' QS and np as possible design variables.

3) when viewed from the concepts on optimization presented

in Chapter II, equations (3.25) through (3.31) constitute

side constraints to an optimized solution of a propeller

selection problem which uses the Wageningen B-Screw Series.

Having noted these points, the propeller selection problem

can now be formulated as a general, non-linear, constrained

optimization problem.
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IV. PROPELLER SELECTION--AN OPTIMIZATION PROBLEM

A. INTRODUCTION

The purpose of this chapter is to present the formula-

tion of the propeller selection problem as an optimization

problem that can be solved using COPES/CONMIN. Three usual

restrictions considered by the designer in any propeller

selection analysis are stated as constraints. Then, the

components of U and Y are assembled based on requirements

from previously cited relationships. The restrictions

considered by the designer and the limitations imposed by

the use of the Wageningen B-Screw Series are presented in

inequality constraint format. A formal statement of the

propeller selection problem as an optimization problem is

followed by a review of the GLOBCM common block format and

the basic subprograms used in all three versions of SUBROUTINE

ANALIZ that pertain to each Design Case.

The FORTRAN subprogram listings are found in Appendix

B. Comment cards have been used extensively in the coding

development to assist the reader.

B. DESIGNER'S CONSIDERATIONS

1. Propeller Size

The first restriction on the selection of any

propeller is size. That is, the propeller race in the stern

of the hull under consideration will only accommodate a
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propeller of some given maximum diameter (Dlim). As a con-

straint on a selected propeller of diameter D, this may be

written as:

D < Dlim  (4.1)

or, alternatively, as:

G9(X) D i < 0 (4.2)

2. Cavitation

Another item of importance in propeller selection is

the cavitation phenomenon. When a propeller of given diameter

D and expanded area ratio AE/A0 is operating to produce a

thrust T, the formation and subsequent collapse of water vapor

bubbles on the blade surface, i.e., cavitation, is likely to

occur if the localized surface pressures, usually on the

"back" side of the blade, drop below the pressure at which

the fluid would boil (Pwatvap) in the surrounding environment.

Avoidance of cavitation can be reasonably assured by selecting

a propeller having certain geometric characteristics. A good

empirical relationship that establishes these characteristics

for propellers typified by the Wageningen B-Screw Series is

the Keller Cavitation criterion [Ref. 2: p. 259]. It speci-

fies the minimum required expanded area ratio (AE/AO min ) to

avoid cavitation and is given by:
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(1.3 + 0.3Z) T(AE/AO)min + atm acghc£- wv " +b (4.3)
(Patwatv'apw D7

where:

Z = number of blades;

T = developed thrust (lbf);

D = propeller diameter (ft);

Patm = atmospheric pressure (psia);

Pwatvap = fluid vaporization pressure (psia)

2 4= fluid density (lbf sec /ft

acg = 32.174 (ft/sec2 )

h cz = depth to shaft centerline (ft)

b = constant: 0.1 for Z = 2, 0.2 for Z = .

As a constraint on the propeller selection, this requirement

is writen as:

(AE/Ao) min : AE/A O  (4.4)

or

(A E/A 0) min
G1 0 (X) = AE/A 1 < 0 (4.5)

3. Strength

The final designer's consideration (for this study),

included in the selection of a propeller, is that of strength.
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Given the propeller's material (promat), selected from Table

(II), and the loadings (T and QS) imposed, it is important to

ensure that the blade's cross sections have proper dimensions

(in an ideal sense, maximum blade section thickness (t*) and

chord length (c)) to ensure adequate strength. Since the

use of the B-Screw Series requires that the chord length

(c) vary as a prescribed function of D, Z and AE/Ao, as given

in Table 1 of Reference [2], the adequacy for strength can

be determined by an appropriately selected value for blade

section maximum thickness-to-chord ratio (t*/c) alone. So,

if t*. is the established minimum blade section maximum
min

thickness, then the strength requirement follows from the

constraint given by:

ti/C= (t*/c) mi < t*/c (4.6)

The fact that blade section maximum thickness for the B-Screw

Series varies linearly with the propeller radius (R) allows

the strength constraint (equation (4.6)) to be evaluated at

one section along the radius. This point is chosen to be at

the 3/4 radius (.75R). Therefore, equation (4.6) becomes:

(t*/c).75R min (t*/c).75R (4.7)

or

(t*/c). 75R min 1 < 0 (4.8)GII(X) --- /c).75



Reference (2] suggests the following empirical relation for

the minimum required equivalent blade section maximum

thickness-to-chord ratio (t*/c)
.75R min

Z 0.0028+0.21 (2 375. .2 .P/D)PD
2 2

4.123N D (S + - p 
(t*/c).75R min 2.073 AE/A 0 12.788

(4.9)

where:

D = propeller diameter (ft);

PD = delivered power (hp);

Np = propeller revolution rate (rpm);

Sc  = propeller material allowable stress (psi);

P/D = pitch-diameter ratio.

However, in Chapter VI of this thesis, an algorithm which

employs the Schoenherr formulation [Ref. 8] with some modi-

fications, is presented as an alternative to equation (4.9).

C. THE DESIGN VECTOR

In view of the preceding presentations on optimization

and powering, the design vector D can be assembled for the

general propeller selection problem utilizing the B-Screw

Series. This vector is composed of preassigned parameters

relating to environmental conditions, hull characteristics
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and the propeller which are required for various equations

and the design variables.

1. Parameters

a. Environmental

These parameters pertain primarily to the fluid

conditions in which the propeller operates and to the atmos-

phere. Required for various calculations, they are:

1) fluid temperature (*F)--Temp

2) fluid density (lbf sec 2/ft 4)--p

3) fluid viscosity (ft 2/sec)--v

4) fluid vaporization pressure (psia)--Pwatvap

5) atmospheric pressure (psia)--patm

b. Hull Characteristics

These parameters pertain to certain details pre-

scribed for the hull under study in the powering analysis.

They are:

1) wake fraction--wt

2) thrust deduction--td

3) relative rotative efficiency --nR

4) number of propellers--noscrw

5) shaft centerline depth (ft)--hck

6) propeller diameter limit (ft)--Dlim

c. Propeller

These parameters are specified in view of their

discrete-valued nature. They are:

1) number of blades--Z

2) material--promat
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Table (II) lists materials and properties considered in this

study. These values are taken from Table (35), Section 15

of Reference [16].

TABLE II

Material Identifier Reference

promat Material Allowable Stress--Sc Density--wd
(psi) (lbf/in3

1 Cast Iron 3600--3950 .260

2 Cast Steel 5915--6265 .289

3 Type 2 Bronze 7200-7585 .305

4 Type 4 Ni-Al 8910--9430 .278
Bronze

5 Stainless Steel 5400--5500 .283

2. Design Variables

In view of equations (3.13) through (3.17), the

design variables common to all selection approaches are:

1) PE

2) V

3) D

4) P/D

5) A o

6) (t*/c).75R

7) Np

8) 0s

The evctors 5 and X are shown schematically in figure (4.1).
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D. CONSTRAINTS

Besides the constraints imposed by equations (4.2),

(4.5) and (4.8), equations (3.25) through (3.31) are rearranged

to the format of constraints in equation (2.9). They are

listed as follows:

1) Equivalent Reynolds Number--Equation (3.25) becomes:

1 < .75R
-< 2 .75R < 1000 (4.10)

2 x 106

Two constraints are derived:

GRn* 75R106)=l----~ < 0 (4.11)
2 x 10

Rn. 75R
G(X) = 2ix10- 1000 < 0 (4.12)2 x×106 -

2) Expanded Area Ratio--Equations (3.27) through (3.31)

become:

(AE/Ao) lower(Z) < AE/AO  (AE/A) upper (Z)

(4.13)

Two constraints are derived:

G5 (X) = (AWAo)lower(Z) - AA O < 0 (4.14)

G6 (X) = AE/AO - (AE/AO)upper(Z) < 0 (4.15)
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3) Advance Ratio--Equation (3.22) becomes:

Two constraints are derived:
_J

G1 (X) = -7 < 0 (4.17)

J

G2 (x) - 1 < 0 (4.18)

4) Equivalent Blade Section Maximum Thickness-to-Chord

Ratio--Using equation (3.19), boundaries on the range of (t*/c).75R

are defined by:

1 < (t*/c) < 4(t/c) .759
f(t/c).75R - . 4 (4.19)

Two constraints are derived:

G 7(X) = l(t/c).75R - (t*/c) < 0 (4.20)7 2 .75R

Gs(X) = (t*/c) 75R- 4 (t/c)75R < 0 (4.21)

E. OBJECTIVE FUNCTIONS

Upon consideration of equation (3.13), Design Case No. 1

and Design Case No. 2 require that the open water efficiency

(no ), given by equation (3.11), be maximized. In terminology

related to optimization, this is stated as:
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OBJ1,2 no  (4.22)

Design Case No. 3, the "matching" problem, requires that the

blade weight (bldwt) be minimized. This is stated as:

OBJ3 = bldwt (4.23)

F. PROPELLER SELECTION OPTIMIZATION PROBLEM STATEMENT

As a general, non-linear constrained optimization problem

to be solved by COPES/CONMIN, the propeller selection problem

for all Design Cases may be stated as one equation given by:

Minimize: F(X) = OBJ1, 2 or OBJ 3  (4.24)

Subject to: Gj(K) < 0 j = 1,...,12

Xlower < X. < Xu p p e r  i
1 - 1 - 1..

The constraint G (X) and the values for Xlower and Xupper
12 1

will be specified according to each Design Case.

G. CODING FUNDAMENTALS

1. GLOBCM Common Block

The GLOBCM common block, required by COPES/CONMIN,

is now assembled. Table (III) specifies the assignment loca-

tions for the FORTRAN variables which define objective

functions, design variables and constraints.

2. SUBROUTINE ANALIZ

While each Design Case uses a different approach,

all analyses are very similar. Therefore, each SUBROUTINE
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T III

Global Comnon (GLOBCM) Catalog

Global FORTRAN DEFINITION

Location Name

1 ETAO no

2 WEIGHT bldwt

3 AEDVAO AE/Ao

4 DIA D

5 N Np = 60 •np

6 PE PE

7 PDIVD P/D

8 QS QS

9 TC75R (t*/c)75R

10 V V (ft/sec)

11 RJCHL Gl (X)--eqn (4.17)

12 RJCNU G2 (X) -- eqn (4.18)

13 R75RCL G3 (X)--eqn (4.11)

14 R75RCU G4 (X)--eqn (4.12)

15 AEAOCL G5 (X) --eqn (4.14)

16 AEAOCU G6 (X)--eqn (4.15)

17 TC75CL G 7 ()--eqn (4.20)

18 TC75CU G8 (X)--eqn (4.21)

19 POWBAL G1 2 (K)--eqn (7.10) or (8.11)
or (9.4)

20 DIACNU G9 (X)--eqn (4.2) or (9.6)

21 AEAOCV G10 (X)--eqn (4.5)

22 TCSTRS G1 1 (X)--eqn (4.8)

23 RJ J
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ANALIZ shares a common structure and other common subroutines

which perform calculations required in all cases. Appendices

C, F and I contain, respectively, the source listings of

SUBROUTINE ANALIZ for Design Case No. 1, Design Case No. 2

and Design Case No. 3.

a. Structure

The structure common to all cases follows

accordingly:

1) all initialization of environmental, hull and propeller

parameters is accomplished in the input section (ICALC = 1).

2) evaluation of KT and KQ, all constraints and appropriate

objective functions (-no or bldwt) are accomplished in the

execution section (ICALC = 2).

3) output of results for each optimization problem is

accomplished in the output section (ICALC = 3).

b. Basic Subprograms

The following FORTRAN subprograms are used in

all three SUBROUTINE ANALIZ codes:

1) SUBROUTINE CH75RA--calculates the equivalent blade

section chord length (c 7 5R) for the propeller using Table 1

(Ref. 2, p. 252].

2) SUBROUTINE REY75R--calculates the equivalent Reynolds

number (Rn*75R) using equations (3.19) and (3.20).

3) SUBROUTINE COEFSA--calculates the thrust and torque

coefficients (KT and KQ) through sequential calls to SUBROU-

TINE CALCKT and SUBROUTINE CALCKQ. The polynomial expressions
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(Tables (5) and (6), [Ref. 2]) for these coefficients are

contained in SUBROUTINE CALCKT and SUBROUTINE CALCKQ respec-

tively.

4) SUBROUTINE OPWEFF--calculates the open water efficiency

(no ) using equation (3.11).

5) SUBROUTINE JCNA--calculates the constraints on the

advance ratio (J) given by equations (4.17) and (4.18).

6) SUBROUTINE REYCNA--calculates the equivalent Reynolds

number constraints given by equations (4.11) and (4.12).

7) SUBROUTINE EXTCCN--calculates the constraints on ex-

panded area ratio (AE/AO) and equivalent blade section maxi-

mum thickness-to-chord ratio (t*/c 7 5R) given by equations

(4.14), (4.15), (4.20) and (4.21).

8) SUBROUTINE DICNUA--calculates the constraint on the

propeller diameter (D) given by equation (4.2) using the

hull parameter on maximum diameter (Dlim).

9) SUBROUTINE CAVCNA--calculates the constraint for

cavitation given by equation (4.5) using equation (4.3).

10) SUBROUTINE STRCNA--calculates the constraint for

strength given by equation (4.8) using equation (4.9).

H. SUMMARY

The propeller selection problem has now been formulated

as a constrained optimization problem which can be solved

by COPES/CONMIN. Two items remain for discussion before

proceeding to specify the final details pertaining to each

SUBROUTINE ANALIZ code and to present numerical examples.

These items are:

65j



1) the theory and coding relating to the computation of

the propeller's blade weight for the evaluation of the objec-

tive function in Design Case N4o. 3 (OBJ 3).

2) the theory and coding relating to the computation of

the minimum required equivalent blade section maximum thickness-

to-chord ratio (t*/c 7  )in for use in the alternative

evaluation of the strength constraint given by equation

(4.8).
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V. PROPELLER BLADE WEIGHT--AN OBJECTIVE FUNCTION

A. INTRODUCTION

In this chapter, the method for the computation of the

propeller's blade weight (bldwt), the objective function

OBJ, is examined. First, a brief overview on the steps in

the computational procedure is presented. The FORTRAN

subprogram SUBROUTINE WGTCAL developed from the algorithm is

then described. Again, Appendix B contains all subprogram

listings.

B. THEORY AND PROCEDURE

Given the material of a propeller, the calculation of

the weight of one blade involves nothing more than a volume

calculation, a relatively routine task performed by most naval

architects/marine engineers. Analagous to the determination

of the underwater volume of a ship's hull, the calculation

is an integration of blade section profiles' cross-sectional

areas over the propeller radius (R).

1. Limits of Integration

Figure (5.1) depicts a side elevation view of a

blade and hub, parallel to the propeller shaft axis. The

cross-hatched area indicates the trace of the volume to be

calculated. In view of equations (3.32) and (3.33), limits

of integration are from r - .167R to r = R for Z = 4,5,6 and

r - .18R to r = R for Z = 3,7. For convenieance, a non-

dimensional variable "x" will be defined as:
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_X

iR

r (5.1)

Limits are now expressed as x = .167 or .18 to x = 1.0.

Quite obviously, R = (D/2.0).

2. Blade Section Profile

Figure (5.2) depicts an expanded cylindrical blade

section in profile view at a given r or x. For the Wageningen

B-Screw Series, the profile is defined, geometrically, by

a succession of vertical ordinates which specify points along

the blade section's profile on the "face" (yf) and on the

back (yb) with respect to the pitch reference line. At any

r = xR, ver-ical ordinates for "aft" (P < 0) and "fwd"

(P > 0) portions of the blade section are determined by:

Yfa = V1 (t* - te) P < 0 (5.2)

= (V+V 2 ) (t*-t* ) + t* P < 0 (5.3)

and

yff =V(t* - t*e) P > 0 (5.4)

Ybf (V+V 2 ) (t*-t*e) + t*e P > 0 (5.5)

where:

VIV 2 = tabulated values depending on x and P
(see Tables (2) and (3), Ref. [2]);
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t~e = blade section leading edge thickness (ft);

t~ = blade section trailing edge thickness (ft).

Units for Yfa' Yba' Yff and Ybf are feet (ft). For this

study, a reasonable assumption is made in that:

t = t* = (1) t* (5.6)9.e te T

3. Blade Section Cross-Sectional Area

The cross-sectional area at each x = r/R (A(x)) is

determined by:

9 10
A(X) = Aa + I Ai (5.7)

i=l j=l

where

h + h
A = ai 2 (5.8)

h = Ybai - Yfai (5.9)

hai+l Ybai+l - Yfai+l (5.10)

Expressions for Af, hfi and hfi+l follow in similar fashion.

Values for yfai and Ybai are determined at 9 points

along the "aft" portion of a given blade section's chord (c):

values of yffi and Ybfi are determined at 10 points along the
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"fwd" portion. The values for APai and APfi are fractional

values of the blade section's chord length (c) at radius

r = xR as determined from Tables (2) and (3) in Reference

[2]. The units for A(x) are square feet (ft 2). Units for

hail hai+l, hfi, hfi+l, c, APai and APfi are feet (ft).

4. Volume Integration

The blade volume (bldvol) is finally determined by

using Simpson's Rule for integration of A(x) along the non-

dimensional radius x using appropriate limits.

5. Blade Weight

Once the blade volume (bldvol) is calculated, the

weight (bldwt) is determined by:

bldwt = bldvol - wd • 1728 (5.11)

where:

bldvol = volume of one blade (ft 3);

wd = material weight density (lbf/in 3).

Weight Density (wd) depends on blade material (promat).

Table (II) lists appropriate values.

C. CODING

SUBROUTINE WGTCAL is the main subprogram for the blade

weight calculation. It, in turn, calls the following FORTRAN

subprogram for various calculations:

L 72



1) SUBROUTINE TDIST--generates, at specified radius

values, a distribution of blade section maximum thicknesses

(t*).

2) SUBROUTINE BLDPRP--generates, at specified radius values

(i.e., r = .167R or .18R, .2R, .3R, .4R, ..., .9R, 1.OR),

various "blade section properties", one of which is a blade

section's cross-sectional area given by equation (5.7).

Other properties which are determined (for later use in

direct stress computations) include blade section chord

lengths and centroids and "critical point" locations as

defined in Chapter VI.

3) SUBROUTINE BLDVOL --performs a Simpson's Rule integra-

tion for the propeller blade volume (bldvol) using blade

section cross-sectional areas generated in SUBROUTINE BLDPRP.

The blade weight (bldwt) is computed as a final step in the

main subprogram SUBROUTINE WGTCAL.

Examination of the codes in Appendix B reveals extensive

use of common blocks for passing data from one subprogram to

another. Comment cards provide a full definition of all

common blocks as well as a description of the task being

performed at various points in a given subprogram.

D. SUMMARY

The coding developed for this study is, admittedly, not

very compact and efficient. However, the intention has been

to write all codes with sufficient documentation in order to

facilitate the reader's understanding of the algorithms employed

as well as to make the author's debugging work easier.
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VI. THICKNESS-TO-CHORD RATIO--A DESIGN CONSTRAINT

A. INTRODUCTION

The purpose of this chapter is to examine the development

of an algorithm that will be used to determine the minimum

required equivalent blade section maximum thickness-to-chord

ratio used in equation (4.8). The formulation is based upon

the method developed by Dr. Karl E. Schoenherr [Ref. 81 in

1963. After a review of the past and present methods employed

in propeller strength analysis is conducted, a description of

the Schoenherr model and a list of the assumptions used with

that model is presented. Then, a brief restatement of his

model's equations which are used in the algorithm is followed

by a derivation of the author's modifications to the Schoenherr

method. The chapter is completed by conducting a review of

the theory and coding employed by the algorithm.

The principal reference which is cited throughout this

chapter is, again, Reference [8]. The reader is encouraged

to review this reference for further details.

B. PROPELLER STRENGTH ANALYSIS--A HISTORICAL REVIEW

Marine propeller blades present a special class of struc-

tural problem. That problem lies in the difficulty of des-

cribing a blade design in simple mathematical terms for

subsequent analysis through various means. Until the "finite

element method era", analytical methods, including the one
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[Ref. 8] adapted for this study, relied heavily on practical

experience of the propeller designer and semi-theoretical

considerations. Analysis by these methods provided a cri-

terion of stress rather than actual computation of stresses.

These methods for predicting blade stresses were developed by

using "beam' theory or "shell" theory.

The use of elementary beam theory in propeller strength

analysis was first adopted by Taylor (Ref. 22]. He treated

a blade as a cantilever beam attached to the propeller hub

and loaded by thrust and torque forces distributed linearly

over the propeller radius. His approach is often deemed a

"Imodified beam theory" because he chose to calculate the

direct stresses using the moment of inertia properties of

expanded cylindrical blade sections with neutral axis parallel

to the nose-tail (pitch-reference) line or chord of that

expanded section. Reasonable estimates of stresses along the

blade surface were achieved for the unraked, unskewed and

narrow-bladed propellers of his time.

As propellers "modernized" and became skewed and wider

with increasing rake (mostly aft), modifications, improvements

and alternatives to Taylor's theory were developed. Prin-

cipally, modifications by Rosingh (Ref. 23] and Hancock

(Ref. 24] proposed using moment of inertia properties of a

blade section that was normal to the generating line of the

axially projected blade outline. Ronson [Ref. 25] later

improved Taylor's theory for application to wide-bladed
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propellers. Morgan [Ref. 26] provided an improved method

for calculating the geometric properties of "modern" airfoil-

shaped blade sections. Aernoldus and Keyser's [Ref. 271

"quasi-static" modeling of the propeller blade allowed

for additional consideration to stresses induced by centri-

fugal loading of the raked and skewed blade. The beam

theory approaches to propeller blade stress analysis culminated,

for all practical purposes, with Schoenherr's work [Ref. 8]

in 1963.

Alternatives to Taylor's beam theory approach, prior to

1963, consisted of the application of "shell" theory to the

propeller blade strength problem. This approach was first

proposed by Conn [Ref. 28] and subsequently formulated by

Cohen [Ref. 29] who modeled the blade as a helicoidal shell

with variable thickness and infinite width. "Shell Theory"

was utilized again in experimental studies by Connolly

[Ref. 30] who, like his predecessors, was also forced into

making an assumption about the behavior of the displacements

of the blade sections (i.e., constant displacements normal

to the constant pitch blade at each fractional radius dis-

tance from the hub) beyond usual assumptions of shell theory.

Essentially, his experimental results on one specific pro-

peller contradicted the computational values. Attempts at

a generalized numerical solution to Connolly's equations

appeared in 1963 [Ref. 31] and 1964 [Ref. 32]. In 1968,

Atkinson [Ref. 33], compared Connolly's results with currently
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adopted cantilever beam methods and found, based on the

inconsistency of results, that it was rnot possible to_

recommend one method over the other in the blade strength

design procedure; another approach was needed.

Commenting on Atkinson's paper at that time, Sontvedt

[Ref. 34] pointed out that, in view of these inconsistencies,

the only approach to blade strength analysis which did not

require very broad assumptions was the finite element tech-

nique. Developments in the method at that time were provid-

ing a new and powerful tool for structural analysis. The

propeller blade was just another application. Genalis [Ref.

35] developed codes for the determination of displacements

and stresses in a blade under hydrodynamic loads using the

FEM technique and modeling the blade as a shell, a 3-D ele-

ment mesh of tetrahedrons and rectangular prisms and, finally,

a composite of shell and 3-D elements. As an aside, a

finite "difference" solution to Connolly's analytical equa-

tions was proposed in 1972 [Ref. 36]. In 1973, Atkinson

[Ref. 37] reported the application of both hydrodynamic and

centrifugal loads to a blade modeled by a thin-shell triangu-

lar mesh and a thick-shell parabolic and cubic curved element

mesh. The results of the triangular element were considered

unsatisfactory. Another use of the thin-shell triangular

element was reported by Sontvedt [Ref. 34] in 1974 using the

SESAM-69 code (Ref. 381.

The need to model the blade correctly near the hub,

where root stresses are usually critical, necessitated the
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consideration of 3-D elements in lieu of thick/thin-shell

elements (Refs. 39,40]. The use of the 4- and 10-noded

tetrahedral element (i.e., TET-4, TET-10 respectively) to

construct a blade mesh was conducted by Beek [Refs. 41,42].

He observed that improved accuracy of stress values, achieved

by the use of these meshes, were overshadowed somewhat by

the extensive storage capacity required for each analysis.

Another "natural" improvement, from a geometrical standpoint,

appeared in 1978. A general 3-D curved isoparametric element

was incorporated in a computer code [Ref. 43] developed by

Ma based on his previous formulation work (Ref. 44].

The finite element approach will continue to grow in use

in propeller blade strength analysis with each successive

improvement made to the basic elements which are used in the

mesh generation of the blade. But, until the computer storage

problem is resolved to the point where one mesh generation

and subsequent stress analysis of one particular blade be-

comes a minor processing task, the basic analytical techniques

will continue to be a meritable "check" [Ref. 45] in the

preliminary (or conceptual) phase of propeller selection/

design. In this context, the method formulated by Schoenherr

and his colleagues twenty years ago is considered for adoption

in determining a minimum required blade section maximum

thickness-to-chord ratio.
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C. SCHOENHERR'S METHOD

1. Background

Schoenherr's method is applicable to preliminary

(or, conceptual) propeller selection problems because it

employs an assumed thrust and torque force loading distribu-

tion for the propeller blade. This assumption is made at

this stage of the ship's design because the exact wake

velocity distribution at the propeller race is generally

not known.

Also, his method is applicable to propellers repre-

sented by the Wageningen B-Screw Series because the blades of

these propellers meet Schoenherr's criteria for the blade

types covered by his formulation. Specifically, B-Screw

Series blades have:

1) a small constant rake angle of 150 over the entire

blade radius;

2) a constant pitch distribution over the propeller

radius with the exception of the Z = 4 propeller whose pitch

is slightly reduced near the hub;

3) mild skew;

4) linear distribution of blade section maximum thickness

over the radius of the blade;

5) aerfoil profile qualities where the nose-tail line

or the chord of the blade section is approximately parallel

to the pitch reference line.
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2. The Blade Model

Schoenherr models the propeller blade as a cantilever

beam with unsymmuetrical and variable area cross sections

subjected to loading distributions of hydrodynamic and cen-

trifugal forces. The following additional assumptions apply:

1) Flexure theory applies. This subsequently implies the

following: a) plane cross sections remain plane under load,

b) Hooke's Law is valid, c) the blade material is homogeneous

and isotropic, d) fibers are free to extend and contract

independently of adjacent fibers, and e) stresses at a point

arising from various forces superimpose.

2) Shearing stresses and their effects are neglected.

Only the direct stresses on a strength section are taken

into account.

3) The strength sections are taken to be the expanded

cylindrical blade sections at various radial locations.

4) The neutral axes of a strength section are straight

lines passing through the centroid of the expanded cylindrical

blade section and are parallel and normal, respectively, to

the pitch reference line, and therefore, the chord, at each

blade section.

5) Bending Moments are applied in two planes which are

mutually perpendicular to each other. One plane is normal

to the pitch-reference line (and chord) of the strength

section; the other is parallel.

6) The angle between the principal axes of inertia and

the neutral axes is zero.
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Using this model and assumptions, Schoenherr applies

the following irmula for the evaluation of the direct fiber

stress ([ao]) in a blade section at a radius r = ro:

[M0 (]n uO  [M]Eo wO  [___ O

[a]o no o A(x) (6.1)

where:

EM] no, [M]o resultant bending moments in planes
0 normal ((MI ) and parallel ((M] 2 o to

the strengtR section's chord at r = r
(ft-i1bf) ;

[F o  centrifugal force acting normal to the
plane of the strength section at r = r
and resulting from the centrifugal 0
acceleration of the remaining blade
element mass above that strength section
(lbf);

uo , w0  = coordinates of a point on the strength
section's periphery with respect to
that section's neutral axes system (2-n
system) (ft);

A(x0 ) = strength section's cross-sectional area
(ft);

Izo = moment of inertia of the strength
section with respect to the "I" axis

(ft4);

I = moment of inertia of the strengt section
no with respect to the "n" axis (ft");

x 0= non-dimensional radius given by
x0 = ro/R.

Since equation (6.1) indicates that the direct fiber stress

is greatest at points on the periphery of the strength sec-

tion, Schoenherr selects to examine four "critical points"
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on the periphery where the fiber stress is likely to Le a

maximum. These points are designated as C, (, C and

O on Figure (6.1) and are specified by coordinates (ul,wl),

(u2,w2), (u3,w3) and (u4,w4) respectively in the "9-nU

reference system.

The values for (MIno and (M] to are determined by

the following relation:

[Mno [pno + [Mcb]no (6.2)

[M]o= (MplZo + [Mcb]zo (6-3)

where:

[Mp]no = total bending moment due to hydrodynamic
loading acting in a plane normal to a
strength section's chord at r = r
(ftlbf);

[Mp]o= total bending moment due to hydrodynamicloading acting in a plane parallel to

a strength section's chord at r = r
(ftlbf);

[Mcbno = total bending moment due to centrifugal
loading acting in a plane normal to a

strength section's chord at r = r0
(ftlbf);

[Mcbo = total bending moment due to centrifugal
loading acting in a plane parallel to

a strength section's chord at r = r
(ftlbf).

3. Bending Moments Due to Hydrodynamic Loading

The derivations of [Mp] no and [Mp]£o follow directly

from Part I of Schoenherr's paper [Ref. 8: p. 83-89] and,
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therefore, only key equations will be restated. References

to equations which contain no decimal point apply to equations

as numbered in his paper.

Thrust and torque force are components of the hydro-

dynamic "lifting" force acting on a blade. Using an assumed

non-linear distribution of thrust along the blade radius

given by equation (2), Schoenherr derives the following ex-

pression for the bending moment due to thrust ([M t]o ) which

acts at a blade section located at ratius r = r

TR 02 (x0 )

[Mto z (6.4)

where:

T = propeller thrust (lbf);

R = propeller radius (ft);

Z = no. of blades;

02 (xo),Ol(xh) = functions of non-dimensional
radius x evaluated at x = r /R
and xh = 0.2 and given By eqaa-
tions (4) and (9)

For the bending moment due to torque ([M q] ) which

acts at a blade section located at radius r = ro , Schoenherr

derives the following:

E~qJ =Qp 1 2 (Xo)

-M (6.5)[q1 o z 0 (Xh)

where:
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Qp = propeller torque (ft-lbf);

Z = no. of blades;

2 (Xo0),l(Xh ) = functions of non-dimensional radius x
evaluated at x = r /R and x = 0.2
and given by e~uatiSns (19) Xnd (4).

Figure (6.2) depicts the component resolution for

[MP]no and [Mp]zo which results when equations (6.4) and

(6.5) are imposed at a strength section at r = rO which has

a pitch angle Bo . The following relations are derived as

equations (42) and (43) in Schoenherr's paper:

EMplno = [Mt] o cos a° + [M q] sin °  (6.6)

[Mp]Yo = [Mt]0 sin B° - [Mq] O cos o  (6.7)

4. Force and Bending Moments Due to Centrifugal Loading

The derivation and expressions contained in this

section constitute the author's modifications to the formu-

lation in Part II of Schoenherr's paper. In Part II, Schoen-

herr's derivations for [Mcbno and [Mcb]zo are formulated for

computation using a propeller drawing. This follows from

the fact that his method, which was funded by the American

Bureau of Shipping, was intended to be used as that classi-

fication society's "designer's check" on adherence to the

Bureau's strength criteria from a propeller blueprint. To

evaluate the direct fiber stresses from equation (6.1) for

the Wageningen B-Screw Series in accordance with Schoenherr's

85

L ]



mz P
E-4

04 4

E-4
z

01
E-4

00

040

0
4.J

0 En

.41

Cz~CD
0

00

cia)

86



method, [M]cb no and [Mcb] o must be evaluated from expres-

sions derived from the available information on blade sec-

tion profiles and other geometric characteristics which

are contained in Reference [2] and previously used in Chapter

V.

Consider Figure (6.3) where the centrifugal force

fCF] o of a blade element above a blade section at x = x. = ro/R

acts in a radial direction from the shaft centerline. Its

line of action passes through point "N", which is on the same

cylindrical surface as the blade section at x = xo = ro/R,

and through point "G", which is the center of gravity of the

blade element above the blade section at x = x° = r /R.

From the figure, the following expression is derived:

[CF]0  = (CFlo cos C(xO) + (CF]° sin (xO) (6.8)

[CF]0 is shifted to point "N" and is decomposed into

components [CF] cos (x,) and [CF]o sin '(xo). The entire

cylindrical surface in which the blade section at x = x° = r /R

and point "N" lie is now expanded into a flat plane for further

consideration (see Figure (6.4)). In this configuration,

[C F] cos (x ) is normal to this flat plane while [C F o sin ?(x0 )

lies in this plane.

Let point "0" be the location of the blade section's

neutral axes system (i.e., the i-n system). Then, the forces

and moments due to the centrifugal reaction of the blade ele-

ment above this section act at point "0" and are given by:
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[FC] 0  = [CF]o Cos ; (xo) (6.9)

ED ]O = [CF]o sin (xo) (6.10)

[M b] o = [Fc I No- (6.11)

[Mcw 0  = [DC]o • - (6.12)

where:

[F c = direct force, due to centrifugal action,acting on the blade section located at

x = x0 = r /R;

[Dc]O  = shear force, due to centrifugal action,
acting on the blade section located
at x = xo = ro/R;

[M cb = bending moment at point "0" imposed by
S 1F]0 acting through point "N";

[M cwI o  = torsional moment at point "0" imposed by
ED CIO acting through point "N".

Since Schoenherr's method does not consider shear forces and

their effects, [Dc]0 and [McI will not be considered in

this modification. However, [F c1 and [Mcb 0 must now be

computed for each blade section along the propeller's radius

in order to account for their contributions to equations

(6.2), (6.3) and, finally, in equation (6.1).

The computation is derived as follows. Consider

Figure (6.4). Again, [F C O acts through point "N" and is

normal (outward) to the plane of the figure. [Mcb] 0 is now

resolved into components of the X-n axes system as follows:
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[Mcb ]no [CFlo cos (x {po sin ao + qo cos 80 + Yco) (6.13)

[Mb] = [C1 cos ;(x o ) {qo sin 80 -po cos 80 + Xco} (6.14)

where:

8o = pitch angle of the blade section at
x = x0 = r /R;

X distance of the blade sections centroid from
the generator line (ft);

Y c = distance of the blade section's centroid from
the pitch reference line (ft);

qo = distance to point "N" from point "P"
parallel to the shaft axis at x = x°  r /R
(ft);

Po = distance to point "N" from point "P"
perpendicular to the shaft axis at
x = x0 = r /R (ft).

00The quantity 80 is found by the relation:

tan 8 1 (P/D) (6.15)
T O  0

For the Wageningen B-Screw Series, (P/D) is a constant along R

except for propellers with Z = 4.

The quantity [CF] 0 is computed from the relation:

wdV o  2 (iG) (6.16)
[CF]0  = 1728 acg (27rn) Ro

where:
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Vo  = volume of the blade element above the blade
section at x = x. = r /R (ft3 );

2acg = 32.174 ft/sec

wd = material weight density (lbf/in
3);

np P = propeller revolution rate (rps);

(xG)o = non-dimensional radial position of "G"for the blade element above the shaft

axis;

R = propeller radius (ft).

At this point, only five quantities remain to be determined

for the evaluation of the expressions of equations (6.10),

(6.13) and (6.14). They are:

1) cos (x o)

2) p0

3) qo
4) (x G) 0

5) Vo

These quantities are determined by integration over the

blade element above the blade section, located at x = xo = ro/R ,

from x = x0 to x = 1.0.

The values for p0 and q0 will vary with the location

of "G" (from Figure (6.3)) which depends on x. Consider a

radially thin slice of the blade element above the blade

section, located at x = xo = r0/R (see Figure (6.5)). This

thin "slice" is located at a non-dimensional distance x from

the shaft centerline where x0 < x < 1.0. Figure (6.6) depicts

this section expanded onto a plane. Let "g" be the centroid

of that "slice". If x is the distance from the generator
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VI

line to "g" in feet and y is the distance from the pitch

reference line in feet, then, from Figures (6.5) and (6.6),

the following relations apply:

i = x R tan n (6.17)g

i -a = i9-x sin g -y cos ag (6.18)

t = x cos 8 - y sin (6.19)

where:

n = rake angle at x;

x = distance of "g" from point "P" parallel to
g the shaft axis (ft);

yg = distance of "g" from point "P" perpendicular
to the shaft axis (ft).

For the Wageningen B-Screw Series, rake angle n is a constant

150 everywhere along the radius R.

Now, to compute the volume of the blade element above

the blade section located at x = x. = ro/R, the following

expression is used:

1
V0  = f RA(x) dx (6.20)

x=XO

To compute the non-dimensional radial position of

"G" for the blade element above a blade section located at

x = x0 = 0 /R, the following expression is used:
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1
f A(x) xdx

()o-- = 0 
(6.21)

f A(x) dx
x=x

0

To compute the tangential position of "G" for the

blade element above a blade section located at x = xo = ro/R,

the following expression is used:

1
f A(x) t dx

X=X 
0

T = 0 (6.22)o 1
f A(x) dx
X=X

0

And, finally, to compute the axial position of "G"

for the blade element above a blade section located at x = x°

= r /R, the following expression is used:

1f A(x) (ig-ag) dx
xo  g

Ao = 1 (6.23)

f A(x) dx
x

0

Using the values just determined for (3EG)o , To and

A0 , the following expressions are used to evaluate p0 and

qo :

x
P0  = T T (6.24)(xG)o

96

t I



qo= AO - xO tann (6.25)

The expression for cos i(x ) follows:

cos(X) =--- (6.26)
0

The formulation is now complete. Equations (6.10),

(6.13) and (6.14) can now be evaluated for any blade section

located at x = x0 = r /R. From here, equations (6.2) and

(6.3) are evaluated. Finally, using the results from these

equations and equation (6.9), equation (6.1) can be evaluated

for the four points, specified by coordinates (ul,wl),

(u2,w2), (u3,w3) and (u4,w4), at any location x = x0 = r0 /R.

From the development discussed in Chapter V, the

values for A(x), Xg yg, I no and I o are readily available.

D. ALGORITHM FOR THE CONSTRAINT

1. Theory

Schoenherr's formulation with the modifications just

derived can be used in determining the minimum required

equivalent blade section maximum thickness-to-chord ratio

((t*/c).75R min ) for use in the constraint Gil(X) < 0 given

by equation (4.8). The procedure employed is as follows:

1) assume an initial value for (t*/c).75R mi using

equation (3.21);

2) increase this value by a small amount;
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3) using (t*/c) .75R rain obtained from step (2), generate

a distribution of minimum required blade section thicknesses

(t*. ) for blade sections at specified points along the
min

propeller radius, say at r = .2R, .3R, .4R, .5R, .6R, .7R,

.8R and .9R;

4) determine all blade section properties to include:

a) cross-sectional area, b) chord length, c) centroid location,

d) moments of inertia with respect to the principal axes

system (i.e., X-n system), e) coordinate values for the four

critical points defined in the previous section;

5) compute the hydrodynamic bending moment components

[MP]no and CMp]Zo at radius locations just specified;

6) compute the values of the centrifugal force [F c1 and

the bending moment components [Mcbjno and [McbJ o acting on

blade sections at radius locations just specified;

7) calculate the direct fiber stresses at all four

critical points for all radius locations specified in step

(3);

8) check the following condition on the calculated fiber

stress at all four critical points at all specified radius

locations using:

a]o 1 144 - Sc (6.27)

9) if the maximum allowable stress (S c ) for the material

is exceeded, then return to step (2) and repeat. Otherwise,

proceed to next step.
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10) since the minimum required equivalent blade section

maximum thickness-to-chord ratio assumed in step (2) has

produced blade sections of adequate strength, evaluate the

constraint given by equation (4.8).

2. Coding Details

The algorithm just outlined is incorporated into the

main FORTRAN subprogram SUBROUTINE STRCNK. This subprogram,

in turn, executes the algorithm through sequential calls to

other key FORTRAN subprograms. These subprograms are listed

as follows:

1) SUBROUTINE TDIST--accomplishes step (3); generates,

at specified radius values, a distribution of minimum required

blade section maximum thicknesses (tin)* for the assumed

value of (t*/c).75R min);

2) SUBROUTINE BLDPRP--accomplishes step (4); described

previously in Chapter V;

3) SUBROUTINE HYDLD--accomplishes step (5); computes the

hydrodynamic bending moment components, given by equations

(6.6) and (6.7), at specified radius locations;

4) SUBROUTINE CNFGLD--accomplishes step (6); computes the

centrifugal force and bending moments, given by equations

(6. 9), (6.13) and (6.14) respectively, at specified radius

locations;

5) SUBROUTINE SIGNDS--accomplishes step (7); computes

direct fiber stresses, given by equation (6.1), for all four

critical points at every specified radius location.
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During the remaining steps of SUBROUTINE STRCNK, the

condition on allowable stress, given by equation (6.27),

is checked at all critical points of blade sections located

at specified radius locations (again, r = .2R, .3R, .4R, .5R,

.6R, .7R, .8R and .9R). The final calculation made is

that for the constraint given by equation (4.8).

Again, extensive use of common blocks, for passing

data from one subprogram to another, is apparent upon examina-

tion of the codes just cited. Comment cards are used

throughout.

E. SUMMARY

The end of this chapter marks the completion of all

prerequisite background and formulation discussions on the

application of COPES/CONMIN to propeller selection problems

involving the Wageningen B-Screw Series. From this point,

each specific Design Case can now be solved as an optimiza-

tion problem.
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VII. DESIGN CASE NO. 1--PROGRAMMING AND COMPARISONS

A. INTRODUCTION

In this chapter, COPES/CONMIN is used in the solution of

propeller selection problems which use the "thrust" approach.

First, the thrust approach to the propeller selection problem

is formulated. Then, a review of a previous author's solution

to this problem is presented. Four variations to this pro-

peller selection problem are solved by COPES/CONMIN. The

chapter is completed with a presentation and discussion of

the results from the four variations.

B. THRUST APPROACH FORMULATION

1. Design Vector XT

As previously pointed out at the conclusion of Chap-

ter III, Design Case No. 1 constitutes a propeller selection

problem which is solved by the thrust approach. In this ap-

proach, the effective horsepower (PE) and the ship's speed

(V) are specified by the designer. From the viewpoint of

optimization, the quantities PE and V become preassigned

parameters. This reduces the design vector X (see Figure 4.1)

to:

D

P/D

= AE/AO (7.1)

(t*/c).75R

Np
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Having specified PE and V, all of the design variables,

as listed in equation (7.1), are not independent. Recalling

equations (3.3) and (3.13), the following relationship

results:

PE (l-td) 21Q S  NP

= (l-wt) " R o " " (7.2)

Rearranging terms, this equation becomes:

(l-wt) PE 550-60
nO QS NP It-T "R - 27 (7.3)

Considering that the open water efficiency (n0) is evaluated

prior to the computation of (-n0 ), or OBJ1 ,2 , then both Np

and QS are not independent design variables. One must

be selected as the independent design variable. Then,

the other variable becomes dependent on the one just

selected.

For this study, Np is selected as the independent

design variable. This choice will reduce the design vector

X for propeller selection problems using the thrust approach

to the following:

D

P/D
= AE/AO (7.4)

(t*/c)
.75R

N p
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Finally, equation (3.8) implies an alternative defini-

tion of X as given in equation (7.4). The design vector for

Design Case No. 1 propeller selection problems is, therefore,

defined as:

D

P/D
AE/A 0  (7.5)

(t*/c).75R
J

2. Powering Constraint

Having determined the design vector Xl, a final

restriction to the general propeller selection problem, as

stated by equation (4.24), remains for consideration. This

restriction constitutes the remaining constraint G1 2(X) men-

tioned in Chapter IV.

Simply stated, the selected propeller, as defined by

--T, must develop enough thrust (T) so that the powering require-

ment, specified by PE and V, is met. Using equation (3.2),

the thrust developed by the propeller can be specified in terms

of thrust horsepower (PT) as:

(P_) = T V(l-wt) (7.6)PT) dev 550u

From equation (3.9), it follows that:

2 D4

(PT)dev = 550 V(l-wt) (7.7)
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Using equation (3.12), the developed thrust horsepower can

be defined in terms of developed effective horsepower given

by:

( (l-td) . de (7.8)PE dev = -wt T (Tdev .8

The restriction imposed by the thrust approach method,

where PE and V are specified, can now be stated as:

PE <- (PE)dev (7.9)

Rearranging equation (7.9), the constraint G1 2 (RI) follows:

(PE) dev
G1 2 (Xl) =1 PE < 0 (7.10)

With the design vector R- and G12 (R) defined, the

propeller selection problem represented by Design Case No. 1

can be stated under one equation as:

Max'.mize: F(X-) = OBJ 1 , 2

Subject to: Gj(X-) < 0 j = 1,...,12 (7.11)

Xl o  < X1. < X1upper i =
1 - - 1

C. PREVIOUS SOLUTIONS

Triantafyllou [Refs. 3,211 considered a propeller selection

problem represented by Design Case No. 1. In his example

problem, the following parameters were specified:
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1) v = 1.139 x 10 - 6 (m2 /sec) = 1.22613 x 10 - 5 (ft 2 /sec)

2) wt = .22

3) td = .19

4) nR = 1.025

5) noscrw = 1

6) Z= 5

7) p E = 18153 (hp)

8) V = 24 (knots)

9) D = 22.0 (ft)

10) AE/AO = .85

The hull under study in his example had the following dimen-

sions:

1) Length = 710 (ft)

2) Draft = 30 (ft)

3) Beam = 100 (ft)

For his analysis, the design vector contained two varia-

bles and was specified as:

P/D

Using an iterative scheme [Ref. 21: p. 791 to solve two equa-

tions in two unknowns, he maximized the open water efficiency

(no ) to obtain the following results:

P/D = 1.1651

Np = 104 (rpm)
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P = 25544 (hp)

no  = .6676

For future comparisons, equations (3.8) and (3.3) give:

J = .8286

QS = 1290000.0 (ft-lbf)

Triantafyllou's results are summuarized in Table (IV).

D. SOLUTIONS BY COPES/CONMIN

The propeller selection problem, as stated by equation

(7.11), is now solved by COPES/CONMIN. Four solution varia-

tions are considered.

The first and second variations attempt to reproduce the

solution given by Triantafyllou. The design vector XT

(NDV = 2) is used in both cases. One variation uses SUBROUTINE

STRCNA to evaluate the constraint G1 2 (XT-) given by equation

(4.8). The other uses SUBROUTINE STRCNK to determine G2(X-T).

The remaining two variations will solve the propeller

selection problem using the design vector XT (NDV = 5) defined

in equation (7.5). Again, one variation uses SUBROUTINE

STRCNA; the other, SUBROUTINE STRCNK.

In all variations, the following parameters are used:

1) Temp - 59 ("F)

2) p - 1.9384 (lbf-sec 2/ft
4

3) v - 1.2285 10 (ft 2/sec)
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4) pwatvap = .247 (psia)

5) Patm = 14.7 (psia

6) wt = .22

7) td = .19

8) nR = 1.025

9) noscrw = 1

10) h = 19.0 (ft)o£

11) Dli = 22.0 (ft)

12) Z = 5

13) promat = 5 (stainless steel; see Table (II))

14) PE = 18153 (hp)

15) V = 24.0 (knots)

All of the above are initialized in the input phase (ICALC = 1)

of each SUBROUTINE ANALIZ pertaining to each variation.

The constraint G1 2 (R) or G1 2 (RT) is evaluated by SUBROU-

TINE BLPOWI which appears in the execution section of each

SUBROUTINE ANALIZ.

1. Variation 1

a. Programming Details

Since this variation uses the design vector XT,

the following design variables of XT become paran.,ters and

are specified in the input section of SUBROUTINE ANALIZ (ICALC = 1)

as:

1) D = 22.0 (ft)

2) AE/AO = .85

3) (t*/c).75R = .0348 (from equation 3.21).
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For constraints, the following are used:

Gi (R ) < 0 j = 1,...,8, 12

Only nine of twelve constraints are evaluated (NCON = 9).

Obviously, some of the twelve constraints are redundant since

D, AE/AO, and (t*/c).75R have been specified.

The upper (XTupper) and lower (XT ow er ) limits on1 1

the design variables J and P/D are set to be:

.01 < J < 1.6

.4 < P/D < 1.4

These upper and lower limits are specified in the COPES

control card deck on card image F under respective fields

VUB and VLB. The initial value for each design variable

(XTi) is also assigned on card image F under the field labeled

X. The first list of card images in Appendix D lists all of

the COPES control cards used for this variation and variation

2. These cards also specify the locations of the design

variables in the common block GLOBCM (see Table (III)) as

well as the locations of the constraints and their boundaries.

Further details on the COPES control card requirements and

the format of each card are contained in Reference [7].

An examination of SUBROUTINE ANALIZ for this varia-

tion, found in Appendix C, shows the calling statement made

to SUBROUTINE STRCNA.
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b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed first in Appendix E. Re-

sults for this variation of the propeller selection problem

are tabulated in Table (IV).

2. Variation 2

a. Programming Details

Everything discussed above for the first variation

applies here with one exception. An examination of SUBROUTINE

ANALIZ for the second variation, found in Appendix C, shows

the calling statement made to SUBROUTINE STRCNK.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed second in Appendix E. Re-

sults for this variation of the propeller selection problem

are tabulated in Table (IV).

3. Variation 3

a. Programming Details

This variation uses the design vector XT. For

constraints, the following are used:

G.(Xl) < 0 j = 1,...,12

All twelve constraints are evaluated (NCON = 12).

The upper (XlUpper) and lower (Xl. w e r ) limits
1 1

on the design variables D, P/D, AE/AO, (t*/c).75R, and J

are set as:
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1.0 < D < 50.0 (ft)

.4 < P/D < 1.4

.2 < AE/AO < 1.1

.003 < (t*/c).7 5 R < .50

.01 < J < 1.6

These upper and lower limits are specified in the COPES con-

trol card deck on card image F under respective fields VUB

and VLB. The initial value for each design variable (X i )

is also assigned on card image F under the field labeled X.

The second list of card images in Appendix D lists all of

the COPES control cards used for this variation and variation

4. These cards also specify the locations of the design

variables in the common block GLOBCM (see Table (III)) as

well as the locations of the constraints and their boundaries.

Further details on the COPES control card requirements and

the format of each card are contained in Reference [7].

An examination of SUBROUTINE ANALIZ for this

variation, found in Appendix C, shows the calling statement

made to SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed third in Appendix E. Re-

sults for this variation of thepropeller selection problem

are tabulated in Table (IV).
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4. Variation 4

a. Programming Details

Everything discussed above for the third varia-

tion applies here with one exception. An examination of

SUBROUTINE ANALIZ for the fourth variation, found in Appendix

C, shows the calling statement made to SUBROUTINE STRCNK

instead of SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed last in Appendix E. Re-

sults for this variation of the propeller selection problem

are tabulated in Table (IV).

E. DISCUSSION

Overall, the results achieved in all variations compare

reasonably well to the solution obtained by Triantafyllou.

However, the following points can be made.

Variations 1 and 2 give the same results. This was ex-

pected in view of the fact that, even though constraints

G9 (XT) through G M(XY) were evaluated, these constraints were

not considered in the optimization search conducted by CONMIN.

In variations 3 and 4, the diameter (D) was driven to

the limit (D lim). This bears out a fundamental rule in pro-

peller design, i.e., the larger the propeller diameter (D),

the greater the open water efficiency (no).

The minimum required equivalent blade section maximum

thickness-to-chord ratio ((t*/c) 75Rmin)' computed in
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variation 3, is substantially smaller than the one computed

for variation 4. As pointed out in Reference (2], the empiri-

cal relation, expressed by equation (4.9) and derived from

equation (70.x) [Ref. 46: p. 6201, does not take into account

the effects of centrifugal loading. These effects include,

specifically, the direct stresses imposed by the inertia load

of the blade and the bending moments which result from rake

and skew of the blade. Therefore, the algorithm developed in

Chapter VI should, and does, produce a larger value for

(t*/c).75R.

A final observation on the results concerns the values

of the open water efficiency. The "optimum" open water effi-

ciency (n ) achieved by Triantafyllou is lower than those

achieved in variations I and 2. A possible reason for this

might be the neglection of the term "dRe/dJ" in Triantafyllou's

formulation of the analytical expressions [Ref. 21: p. 71]

that he used in his analysis. The difference in the open

water efficiencies subsequently accounts for the differences

in the propeller revolution rate (Np) and the delivered

torque (0S) when the relation in equation (3.3) is considered.
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TABLE IV

Design Case No. 1--Results

GROP I'TW4 TRIANTA-
FYLLOU 1 2 3 4

PE 18153.0 18153.0 18153.0 18153.0 18153.0

Given V 24.0 24.0 24.0 24.0 24.0

Design D 22.0 22.0 22.0
Variable
Speci- A/A .85 .85 .85
fied (t*/c) 75R .0348 .0348

D 21.9991 21.9659

Design P/D 1.1651 1.0036 1.0036 .9981 1.0071
Variables .8205 .8149

(t*/c) 75R .0330 .0642

J .8286 .7371 .7371 .7343 .7394

Maximize n .6676 .7091 .7091 .7109 .7066

Dlim  (22.0) (22.0) 22.0 22.0

Restric- A" min  (0.5258) (0.5258) .5269 .5267
(t*/c) (0.21266) (0.50761) .021998 .053259

75rein

Np 104 116.9 116.9 117.4 116.7

Other Q 1290000 1080451. 1080451 1064574 1084003

PD 25544.0 24051.3 24051.3 24030.3 24094.8
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VIII. DESIGN CASE NO. 2--PROGRAMMING AND COMPARISONS

A. INTRODUCTION

In this chapter, COPES/CONMIN is used in the solution of

propeller selection problems which use the "power" approach.

First, the power approach to the propeller selection problem

is formulated. Then, a review of a previous author's solu-

tion to this problem is presented. Four variations to this

propeller selection problem are solved by COPES/CONMIN. The

chapter is completed with a presentation and discussion of

the results from the four variations.

B. POWER APPROACH FORMULATION

1. Design Vector X7

As previously pointed out at the conclusion of

Chapter III, Design Case No. 2 constitutes a propeller selec-

tion problem which is solved by the power approach. In this

approach, the delivered torque (Qs) and the propeller revolu-

tion rate (Np) are specified by the designer. From the view-

point of optimization, the quantities QS and N become pre-

assigned parameters. This reduces the design vector X (see

Figure (4.1)) to:

PE

V
X= D (8.1)

P/D

AE/AO

(t*/c).75R.75
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Having specified QS and Np, all of the design varia-

bles, as listed in equation (8.1), are not independent. Re-

calling equations (3.3), (3.11) and (3.13), the following

relationship results:

(l-td) J K T  21rQ S  N p
P(E (1-- t)- . nR "W * " TO 60 (8.2)

Q

Rearranging terms, this equation becomes:

PE (l-td) (l-wt) K T QS Np
V (-wt) R" np D KQ 5 TO (8.3)

Considering the relations for KT and KQ in equation (3.17),

then both PE and V are not independent design variables.

One must be selected as independent, while the other becomes

dependent on the one selected.

For this study, V is selected as the independent de-

sign variable. This choice will reduce the design vector X

for propeller selection problems using the power approach to

the following:

V

D

= P/D (8.4)
A E/A0

(t*/c) .75R

Finally, equation (3.8) implies an alternative defini-

tion of X as given in equation (8.4). The design vector for
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Design Case No. 2 propeller selection problems is, therefore,

defined as:

V
J

X2 = P/D (8.5)

AE/AO

(t*/c) .

2. Powering Constraint

Having determined the design vector X2, a final

restriction to the general propeller selection problem, as

stated by equation (4.24), remains for consideration. This

restriction constitutes the remaining constraint G1 2 (X) men-

tioned in Chapter IV.

Simply stated, the selected propeller, as defined by

X2, must absorb at least all of the power delivered to it

(PD) which is specified in terms of QS and N . Using equation

(3.3), the power absorbed by the propeller can be specified

in terms of delivered horsepower (PD) as:

2w Qp Np
(P D)absorb = 550 (8.6)

From equation (3.10), it follows that:

K p n 2 D 21T N
(PD)absorb Q 550 " 60-(8.7)

But, equation (3.3) also defines the power delivered to the

propeller as:
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21 Qs NpD 50 60 (8.8)

The restriction imposed by the power approach method,

where QS and Np are specified, can now be stated as:

PD L (PD) absorb (8.9)

Rearranging equation (8.9), the constraint G1 2 (X-2) follows:

GI2) (Dabsorb < 0 (8.10)

Further simplification of equation (8.10) gives:

Qp
G 2 () 1 - Q < 0 (8.11)

With the design vector XY and G12 (-) defined, the

propeller selection problem represented by Design Case No. 2

can be stated under one equation as:

Minimize: F (X2) = OBJ1,2

Subject to: G.(X2) < 0 j = 1,...,12 (8.12)

X2Iower < X2 < upper =

1 - i i

C. PREVIOUS SOLUTIONS

Markussen [Ref. 4] considered a propeller selection prob-

lem represented by Design Case No. 2. In his example problem,
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the following parameters were specified:

1) Temp = 18 (OC) = 64.4 (OF)

2) Pwatvap = 0.0206411 (bars) = .29943921 (psia)

3) P atm = 1.01312856 (bars) = 14.6974 (psia)

4) ixoscrw = 1

5) h c = 6.7 (meters) = 21.9827 (ft)

6) Z= 6

7) P = 18.9 (MegaWatts) = 25344.9 (hp)

8) Np = 110 (rpm)

9) VA = 15.65 (knots)

For his analysis, the design vector contained three

variables and was specified as:

J

)P/D

A E/AO0

A restriction for the minimum required expanded area ratio

((AE/AO) min ) , given by equation (4.3), was also considered.

This imposed a constraint given by equation (4.4).

Using an iterative scheme [Ref. 4: p. 110] to solve three

equations in three unknowns, Markussen maximized the open

water efficiency (n ) to obtain the following results:

J = .61095

P/D - .864380

AE/AO - 36.1861/40.6123 (m2/m2
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= .891012

o= .654391

For future comparisons, equations (3.8) and (3.3) give:

D = 7.19091 (meters) = 23.593375 (ft)

QS = 1210130.0 (ft-lbf)

Markussen's results are summarized in Table (V).

D. SOLUTIONS BY COPES/CONMIN

The propeller selection problem, as stated by equation

(8.12), is now solved by COPES/CONMIN. Four solution varia-

tions are considered.

The first and second variations attempt to reproduce the

solution given by Markussen. The design vector XM (NDV = 3)

is used in both cases. One variation uses SUBROUTINE STRCNA

to evaluate the constraint G12 (3R) given by equation (4.8).

The other uses SUBROUTINE STRCNK to determine GI2().

The remaining two variations will solve the propeller

selection problem using the design vector R2 (NDV = 5) de-

fined in equation (8.5). Again, one variation uses SUBROUTINE

STRCNA; the other, SUBROUTINE STRCNK.

In all variations, the following parameters are used:

1) Temp = 64.4 (eF)

2) p = 1.9892 (lbf-sec 2/ft
4

3) v = 1.1900 x l0 - 5 (ft 2/sec)

4) pwatvap = .2994 (psia)
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5) patm = 14.697 (psia)

6) wt = .22

7) td = .19

8) TR = 1.025

9) noscrw = 1

10) h c = 21.9827 (ft)

11) Dlim = 30.0 (ft)

12) Z = 6

13) promat = 5 (stainless steel; see Table (II))

14) QS = 1210130 (ft-lbf)

15) Np = 110 (rpm)

All of the above are initialized in the input phase

(ICALC = I) of each SUBROUTINE ANALIZ pertaining to each

variation.

The constraint G1 2 (X2) or G1 2(XM) is evaluated by

SUBROUTINE BLPOW2 which appears in the execution section of

each SUBROUTINE ANALIZ.

1. Variation 1

a. Programming Details

Since this variation uses the design vector 35,

the following design variables of R-2 become parameters and

are specified in the input section of SUBROUTINE ANALIZ

(ICALC = 1). The ship's speed (V) is specified as:

V = VA/(l-wt)

= 15.65/(1 - .22)

= 20.0641 (knots)
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Markussen elected to use the standard Wageningen blade sec-

tion maximum thickness-to-chord ratios. Since the equivalent

t/c is given as a function of Z and AE/A0 (see equation (3.21)),

then (t*/c).75R is calculated during each analysis (ICALC = 2)

by the following relation:

(t*/c).75R = (t/c).75R

For constraints, the following are used:

G (RT) < 0 j = 1,...,8, 10, 12

Only ten of twelve constraints are considered (NCON = 10).

Constraints G9 (M) and G1 1 (3) are redundant since no limit

on the propeller diameter (Dlim) appears as a parameter in

Markussen's formulation and (t*/c) was taken to be the75R

Wageningen standard.

The upper (XMupper) and lower (M ow e r ) limits
I. 1

on the design variables J, P/D and AE/AO are set to be:

.01 < J < 1.1

.4 < P/D < 1.4

.4 o < O < 1.1

These upper and lower limits are specified in the COPES con-

trol card deck on card image F under respective fields VUB

and VIB. The initial value for each design variable (XMi) is
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also assigned on card image F under the field labeled X.

The first list of card images in Appendix G lists all of the

COPES control cards used for this variation and variation 2.

These cards also specify the locations of the design varia-

bles in the common block GLOBCM (see Table (III)) as well as

the locations of the constraints and their boundaries. Further

details on the COPES control card requirements and the format

of each card are contained in Reference [7].

An examination of SUBROUTINE ANALIZ for this

variation, found in Appendix F, shows the calling statement

made to SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis,

performed by COPES/CONMIN, is listed first in Appendix H.

Results for this variation of the propeller selection problem

are tabulated in Table (V).

2. Variation 2

a. Programming Details

Everything discussed above for the first variation

applies here with one exception. An examination of SUBROUTINE

ANALIZ for the second variation, found in Appendix F, shows

the calling statement made to SUBROUTINE STRCNK instead of

SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed second in Appendix H.
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Results for this variation of the propeller selection problem

are tabulated in Table (V).

3. Variation 3

a. Programming Details

This variation uses the design vector 2. For

constraints, the following are used:

G.(X2) < 0 j = 1,...,12

All twelve constraints are evaluated (NCON = 12).
The upper (X2upper) and lower (X2lower) limits

1 1

on the design variables V, P/D, AE/AO, (t*/c).75R, and J are

set as:

10.0 < V < 100.0 (ft/sec)

.4 < P/D < 1.4

.4 < AE/AO < 1.1

.003 < (t*/c) < .50.75R

.01 < J < 1.1

These upper and lower limits are specified in the COPES con-

trol card deck on card image F under respective fields VUB

and VLB. The initial value for each design variable (X2i )

is also assigned on card image F under the field labeled X.

The second list of card images in Appendix G lists all of the

COPES control cards used for this variation and variation 4.

These cards also specify the locations of the design variables
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in the common block GLOBCM (see Table (III)) as well as the

locations of the constraints and their boundaries. Further

details on the COPES control card requirements and the format

of each card are contained in Reference [7].

An examination of SUBROUTINE ANALIZ for this

variation, found in Appendix F, shows the calling statement

made to SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed third in Appendix H. Re-

sults for this variation of the propeller selection problem

are tabulated in Table (V).

4. Variation 4

a. Programming Details

Everything discussed above for the third varia-

tion applies here with one exception. An examination of SUB-

ROUTINE ANALIZ for the fourth variation, found in Appendix

F, shows the calling statement made to SUBROUTINE STRCNK

instead of SUBROUTINE STRCNA.

b. Results

The output from the optimization/analysis, per-

formed by COPES/CONMIN, is listed last in Appendix H. Results

for this variation of the propeller selection problem are

tabulated in Table (V).

E. DISCUSSION

The results achieved in variations 1 and 2 compare ex-

tremely well to the solution obtained by Markussen. As
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pointed out in the discussion in Chapter VII, variations 1

and 2 are expected to give the same results for the vector

XM. Obviously, the values obtained for J and P/D, as well

as those for D, and Rn* 75R, are very close to the values

generated in Markussen's example. However, the values for

AE/A0 are somewhat different. It is interesting to note that

the value obtained in variations 1 and 2 (and, for that matter,

variations 3 and 4) is, essentially, the limiting value for

AE/AO, as given in Table (I), for Z = 6. Markussen's value

for AE/AO (i.e., .891012) exceeds the limit (i.e., .80) in

this table.

As pointed out at the end of Chapter VII, the minimum

required blade section maximum thickness-to-chord ratio

((t*/c). 7 5R min)) , computed in variations 1 and 3, is sub-

stantially smaller than the one computed for variations 2

and 4. Again, the same explanation applies here as well.

The results of variations 3 and 4 differ somewhat from

Markussen's results. The reason for this is simply that VA

(or V) has not been specified as a parameter. Consequently,

a higher value for the advance ratio (J), which corresponds

to a higher open water efficiency (no) , has been found in

the optimization search. This result can be interpreted

in the following way. Given:

i) a six-bladed Wageningen propeller (Z = 6) which is made

out of stainless steel (promat = 5);

2) a power train delivering 25344.9 (hp) at a rate of

110 (rpm);
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3) a hull with a wake fraction (wt) equal to .22, a

thrust deduction (td) equal to .19 and a shaft centerline

depth (h cz)of 21.98 (ft),

then, the selected propeller, as defined by X2, can drive

this hull at a maximum speed of V when the hull has a maximum

resistance given by PE*
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TABLE V

Design Case No. 2--Results

GFUP ITEM MAKLaSS VARIATIONS

1 2 3 4

PD 25344.9 25344.9 25344.9 25344.9 25344.9

Given OS 1210130 1210130 1210130 1210130 1210130

110 110 110 110 110

Design
Variable V 15.65 15.65 15.65
Seciied V 20.0641 20.0641

J .61095 .6475 .6475 .9927 .8753

JV 30.9138 29.5355

Design iVA 24.1127 23.0377
Variables P/D .864380 .9036 .9036 1.1986 1.0308

A/AO .891012 .8018 .8018 .7946 .7986

(t*/c)75R .0397 .0397 .0499 .0638

Maximize o  .654391 .6660 .6660 .7643 .7330

DI m  (30.0) (30.0) 30.0 30.0

Restrictions A/Ami n  .574729 .5070 .5070 .4622 .4266

(t*/C). 75Fkin (.02729) (.0647) .02706 .0638

D 23.53 22.25 22.25 22.36 24.23

other PE (14057.3) (14057.3) 19945.5 20653.7

.75R 6.478x107 5X107 5x107 5x107 5x107
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IX. DESIGN CASE NO. 3--PROGRAMMING AND COMPARISONS

A. INTRODUCTION

In this chapter, COPES/CONMIN is used in the solution of

a propeller selection problem where "matching" is desired.

First, the "matching" approach to the propeller selection

problem is formulated. Then, a review of a previous author's

solution is presented. One variation to this propeller

selection problem is solved by COPES/CONMIN. The chapter is

completed with a presentation and discussion of the results.

B. "MATCHING" FORMULATION

1. Design Vector R3

Design Case No. 3, the final powering problem con-

sidered in this study, constitutes a propeller selection prob-

lem solved by the "matching" approach. In this approach,

the hull's effective horsepower (PE) and speed (V), the

delivered torque (Qs) and the propeller revolution rate

(Np) are specified by the designer. This reduces the design

vector R (see Figure (4.1)) to:

D
R P/D (9 .1)

AE/A0
(t*/c).75R

For this study, the design vector X is reduced further

by eliminating the propeller diameter (D) as a design variable.
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That is, D will also be specified by the designer so that

the design vector for Design Case No. 3 is defined as:

~P/D)
=Y A E/AO (9.2)

(t*/c) .75R

2. Powering Constraint(s)

Having determined the design vector XT, a final

restriction to the general propeller selection problem, as

stated by equation (4.24), remains for consideration. This

restriction constitutes the remaining constraint G 12( M men-

tioned in Chapter IV as well as an additional constraint.

In the "matching" problem, the selected propeller,

as defined by XT, must satisfy two conditions. First, it

must develop, as a minimum, the effective horsepower (P

as imposed by the design specification. Citing the formula-

tion previously derived in Chapter VII, this condition can

be stated as:

The constraint G 12 (7) follows accordingly as:

G1 2 (0) (P 1- dev < 0 (9.4)
12 P E

For the second condition, the selected propeller can

only absorb, as a maximum, the delivered power (P as
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specified by the designer. The formulation is the same as

that in Chapter VIII except that the inequality signs are

reversed. The condition is stated as:

(PD)absorb . PD (9.5)

In defining a constraint G1 3 (Y3), another location, say

location 24, in the GLOBCM block (see Table (III)) would be

assigned. But, considering the fact that constraint G9 (X)

will not be used because the propeller diameter (D) is speci-

fied, there is no reason why G9 (Y) cannot be redefined, for

this Design Case only, as:

(P)absorb
G9 ( X  P D__ _ - 1 < 0 (9.6)

9 P D

Further simplification of equation (9.6) gives:

Qp

G9 (X-3) = - 1 < 0 (9.7)

In reality, the constraints just defined should be

equality constraints. The word "match" does infer equality

in some sense. However, as previously stated in Chapter II,

the version of COPES/CONMIN used in this study does not

directly handle equality constraints. But, since CONMIN

attempts to minimize constraints in the optimization search,

it will be assumed that a "match" can be achieved.

130

LJ



With the design vector - and the constraints

G12 (3) and G9 (3) defined, the propeller selection problem

represented by Design Case No. 3 can now be stated under

one equation as:

Minimize: F(X-3) = OBJ 3

Subject to: G.(X--X) < 0 j = 1,...,12 (9.8))

X3lower < X. < X3u
p p e r  i = 1,...,31 - 1- 3.

C. PREVIOUS SOLUTIONS

The propeller selection problem considered by Vassilopoulos

[Ref. 18) actually represents a propeller "design" problem

using the "power" approach. The example problem which he

elected to solve is taken from that posed by the International

Towing Tank Conference (ITTC) Propeller Committee. This

problem is concerned with the determination of propeller

thrust (T), diameter (D) and speed of advance (VA) (or ship

speed (V)) for a single-screw cargo ship where:

1) power available to the propeller (i.e., PD) is
30,000 (hp)

2) Z= 6

3) N = 105--110 (rpm)

4) Dli m = 23 (ft)

5) hc = 19 (ft)

The variation of ship speed (V) and of hull effective power

(PE), thrust deduction factor (td) and the wake fraction

(wt) is also given [Ref. 18: p. 20].
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The results from Vassilopoulos' propeller design exercise

produced a propeller that is "matched" at the following values:

1) PE = 21292.6 (hp)

2) V = 24.24 (knots)

3) QS = 1500606.75 (ft-lbf)

4) Np = 105 (rpm)

5) PD = 30000.0 (hp)

His propeller "design" was based upon the following specified

parameters:

1) Temp = 59 (OF)

2) p = 1.9905 (lbf-sec 2/ft
4

3) Pwatvap .247 (psia)

4) wt = .22

5) td = .1725

6) noscrw = 1

7) hc9 = 19.0 (ft)

8) Z=6

9) promat = 5 (stainless teel, see Table (II))

10) D = 22.0 (ft)

11) Np =105 (rpm)

12) PD = 30000.0 (hp)

Using an optimization scheme incorporated in his MVAPDP

computer program, Vassiiopoulos maximized the open water

efficiency (n0 ) and designed a propeller with the following

characteristics:

1) J = .852

2) KT = .242
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3) KQ = .0478

4) no = .691

5) AE/AO = .767

6) bldwt = 7617.2 (ibf)

By utilizing both the lifting line and lifting surface

methods in his design procedure, Vassilopoulos' MVAPDP program

evolved a "constant stress" propeller blade. Consequently,

the values for (t*/c) and P/D varied non-linearly along the

propeller radius (R). According to Vassilopoulos, this

resulted in a minimum weight propeller. The values for P/D

and (t*/c) are listed in Tables (8) and (10) of his paper.

From these values, (t*/c) .75R is approximately .040.

While the propeller represented by Vassilopoulos' design

is different, in many aspects (rake, skew, blade section

aerfoil shape, etc.), from the Wageningen B-Screw Series

propeller, it does represent a minimum weight propeller that

has been "matched" to specific design values. Appropriate

results are summarized in Table (VI).

D. SOLUTIONS BY COPES/CONMIN

The propeller selection problem, as stated by equation

(9.8), is now solved by COPES/CONMIN. One solution variation

is considered. The following parameters are used:

1) Temp = 59 (F)

2) p = 1.9905 (lbf-sec 2/ft
4

3) v = 1.2817 x 10- 5 (ft 2/sec)

4) Pwatvap = .247 (psia)
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5) Patm = 14.7 (psia)

6) wt = .22

7) nR = 1.025

8) noscrw = 1
9) h = 19.0 (ft)

10) Z = 6

11) promat = 5 (stainless steel, see Table (II))

12) D = 22.0 (ft)

Two problems are examined. Problem 1 specifies the following

additional parameters:

1) td = .1725

2) PE = 21292.6 (hp)

3) V = 24.24 (knots)

4) QS = 1500606.75 (ft-lbf)

5) Np = 105 (rpm)

Problem 2 specifies the same parameters as:

1) td = .171

2) PE = 17630.0 (hp)

3) V = 23.0 (knots)

4) QS = 1500606.75 (ft-lbf)

5) NP = 105 (rpm)

All of the above are initialized in -he input section

(ICALC = 1) of similar versions of SUBROUTINE ANALIZ. There-

fore, only one version is included in Appendix I.

The constraints for G9 (-3) and G12 (X--I) are evaluated by

SUBROUTINE BLPOW3 which appears in the execution section of
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SUBROUTINE ANALIZ. Also, note that SUBROUTINE DICNUA has

been deleted from the execution section, while SUBROUTINE

WGrCAL has been added.

1. Programing Details

All twelve constraints are evaluated (NCON = 12).

The upper (X3Mpper) and lower (X3 ower) limits on the design
1 -

variables P/D, AE/AO and (t*/c).75R are set to be:

.4 < P/D < 1.4

.4 AE/AO < 1.1

.003 < (t*/c) 7 5R < .50

These upper and lower limits are specified in the COPES con-

trol card deck on card image F under respective fields VUB

and VLB. The initial value for each design variable (X3i )

is also assigned on card image F under the field labeled X.

The list of card images in Appendix J lists all of the COPES

control cards used for both problems. These cards also

specify the locations of the design variables in the common

block GLOBCM (see Table (III)) as well as the locations of

the constraints and their boundaries. Further details on

the COPES control card requirements and the format of each

card are contained in Reference (7].

2. Results

The outputs from the optimization/analysis, performed

by COPES/CONMIN, are listed in Appendix K. Results of both

problems are tabulated in Table (VI).
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E. DISCUSSION

Table (VI) presents the results of problems 1 and 2

along with relevant information from Vassilopoulos' "design".

Problem 1 attempted to "match" a Wageningen propeller at the

design point found by Vassilopoulos. The first COPES/CONMIN

printout in Appendix K indicates that the "match" was achieved

at PE equal to 21.168.1 (hp) and PD equal to 28,150.0 (hp)

(or, QS = 1500607 (ft-lbf) and Np = 105 (rpm)). These values

are judged to be close enough to the "Given" values in Table

(VI).

It is apparent that the Wageningen propeller does not

require all of the 30,000 (hp) of delivered horsepower. The

propeller characteristics (i.e., J, KT, KQ and no) for problem

1 compare very well to Vassilopoulos' values. The expanded

area ratios (AE/AO) are, also, very similar. Of course, the

obvious difference is the blade weight (bldwt) . The Wageningen

propeller blade is over five thousand pounds heavier. Does

this make sense for a minimum blade weight?

The answer is yes.

All one has to do is consider the values of (t*/c) for problem

1 and Vassilopoulos' design. Vassilopoulos' "constant stress"

blade was designed to "absorb" stress up to the allowable

design limit of 5,400 (psi) (for stainless steel) all along

the entire propeller radius (R). Table (12) in Reference

[181 gives further details. The Wageningen propeller blade,

however, represents an "older" type of blade which was de-

signed with a linear blade section maximum thickness (t*)
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distribution. Consequently, it was "overdesigned" for strength

beyond the 3/10--4/10 radius (i.e., .3R--.4R) and contains

excess material. A heavier blade, therefore, results. Note,

also, that the optimizer did not drive the value of (t*/c).5 R

to the minimum acceptable value, (t*/c)75Rmin"

The results of problem 2 show the effect on blade weight

(bldwt) for a Wageningen propeller when the hull's powering

requirements (i.e., PE at V) have been reduced. The weight

reduction of 2000 pounds is significant. The complete re-

sults are listed in the second COPES/CONMIN printout in

Appendix K.
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TABLE VI

Design Case No. 3--Results

GROUP I Tm VASSILOPOUIDS PR4BLEM

1 2

PE 21292.6 21292.6 17630.0
Given V 24.24 24.24 23.0

QS 1500607 1500607 1500607
Np 105 105 105

Design
Variable D 22.0 22.0 22.0
Specified

P/D * 1.1813 1.0906
Design
Variables AE,/Ao .767 .7944 .7742

(t*/c).75R .040 .0794 .0681

Minimize bldwt - 12842.6 10464.7

Maximize no  .691 - -

Dli m  - - _

Restric- AAO m .8515 .7722

tions (t*/c). 75Rmin - .0691 .0681

J .852 .8290 .7866

.242 .2349 .2063

Other KO  .0478 .0448 .0372

no - .6915 .6950

bld t 7617.2 - -

P/D varies with R
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X. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The general purpose non-linear optimizer/synthesizer

COPES/CONMIN has been successfully applied to three typical

preliminary ship design propeller selection problems in which

the Wageningen B-Screw Series is used. The formulation and

programming of each required analysis code (i.e., SUBROUTINE

ANALIZ) have been made as general as possible to allow the

designer a broad variety of solution options for solving

propeller selection problems which can be classified under

any of the three Design Cases that were considered. The

analysis codes have been "modularized" to the extent that

methodical series data from other propeller series, which

are available in the polynomial expression format of the

B-Screw Series, can be easily adapted for powering analysis

utilizing design optimization methods.

Further flexibility in the solution to the propeller

selection problem has been achieved by using COPES/CONMIN

as the optimizer/synthesizer. The designer has now been

afforded the additional capability of specifying the design

variables, the objective functions and the constraints of his

choice. By solving propeller selection problems in the way

presented in this thesis, repetitive problem formulation and

coding have been eliminated.

There are other advantages to solving propeller selection

problems specifically with COPES/CONMIN which have not been
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directly addressed in this study. As stated in Chapter II,

COPES/CONMIN is capable of performing optimization analyses,

sensitivity studies, optimum sensitivity studies and optimi-

zation using approximation techniques. The designer, there-

fore, can select and perform any of these options, using the

same analysis codes which have been presented in this thesis.

While the utilization of a general purpose non-linear

optimizer in solving propeller selection problems allows the

designer greater flexibility in the selection procedure, there

is one important limitation that should be stressed at this

point. This concerns the question whether or not the solution

vector, determined by the optimizer, is a "global" optimum.

As stated in Chapter II, COPES/COMMIN assures that, if a

feasible solution vector is found, it is, at least, a "local"

minimum (or maximum). This implies that, for two different

initial design vectors which are specified in the COPES Con-

trol Card deck on card image F, the same optimum solution

may not be determined by the optimizer. Both solutions would

correspond to minimums (or maximums) of the objective function

and are, therefore, correct. But, does one or the other

correspond to the minimum (or maximum) of the entire vector

design space, i.e., the "global" optimum? For the moment,

at least, there is no definitive answer to the question.

Despite this uncertainty, progress in the field of design

optimization continues to be made. Current developments

[Ref. 47] will soon allow the designer to have a choice in
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selecting a specific optimization algorithm from a "library"

of proven optimization programs which employ the latest

state-of-theart numerical techniques. Again, using one

analysis code, the designer will be able to generate any

number of optimized solutions for the problem under study.

B. RECOMENDATIONS

For future consideration, it is recommended that the

automated design and trade-off capability, provided by a

general purpose non-linear optimizer/synthesizer such as

COPES/CONMIN, be applied to the more difficult problem of

propeller design.

As pointed out in Chapter I, the use of the Wageningen

B-Screw Series represents a "selection" procedure rather

than a "design" process. Today, analytical propeller design

procedures, utilizing lifting line and lifting surface

theory, are becoming increasingly popular among propeller

designers. The propeller design, which results from the

utilization of these analytical methods, is, unquestionably,

more efficient than the standard series propeller. However,

these methods require consideration of many more design varia-

bles in the design process. This appears to be a natural

application for the use of a general purpose non-linear

optimizer/synthesizer.

Here, an analysis code, much larger than those which

have been presented in this study, could be developed which

would incorporate the lifting line/lifting surface theory
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for the determination of the propeller performance character-

istics, the local cavitation numbers and also the calculation

of the pressure distributions over the blade. These pres-

sure distributions would be utilized in the strength analysis

of the blade. This analysis would utilize the finite element

technique on an appropriately generated mesh model of the

blade. Having defined the steps for this design procedure

in the analysis code, the propeller designer now "couples"

his analysis to the optimizer/synthesizer for determination

of the optimum design. A massive amount of computer storage

would certainly be required, but this concept is feasible

and, in the author's view, is worthy of future consideration.

C. A FINAL NOTE

in conclusion, this thesis has demonstrated, in effect,

another interesting application of the method of design opti-

mization. The author, in no way, wishes to leave the reader

with the impression that the techniques of design optimi-

zation are the "be all--end all" for engineering analysis.

Design optimization techniques are useful and powerful tools

that stand to relieve the engineer of the mundane tasks of

numerical calculations and subsequent graphic plotting.

But, they are just tools. In the final "analysis", good

engineering judgment is paramount in their application and

use.
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APPENDIX A

FORTRAN VARIABLE CROSS REFERENCE LIST

Symbol Fortran Variable

AE/A0  AEDVAO

(AE/AO) m AEAOMN

bldwt WEIGHT

c75R C75R

D DIA

D lim  DIALIM

h ck HCL

J RJ

KQ KQ

KT KT

noscrw NOSCRW

N p N

P E PE

P D PD

P/D PDIVD

Pwatvap PWATVA

Patm PATM

promat PROMAT

os QS

Rn*5 R75R

Sc SC

td TD
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APPENDIX A (CONT.)

symbol Fortran Variable

Temp T EMP

(t*/C).75R TC75R

V (ft/sec) v

" (knots) VI(

wt WT

z z

Tio ETAO

TIR ETARR

v WATNU

p WATRO
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APPENDIX E
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APPENDIX H

COPES OUTPUT--DESIGN CASE NO. 2
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